scholarly journals WEED INTERFERENCE IN COTTON PLANTS GROWN WITH REDUCED SPACING IN THE SECOND HARVEST SEASON

2017 ◽  
Vol 30 (1) ◽  
pp. 1-12
Author(s):  
MICHEL ALEX RAIMONDI ◽  
◽  
RUBEM SILVÉRIO DE OLIVEIRA JUNIOR ◽  
JAMIL CONSTANTIN ◽  
LUIZ HENRIQUE MORAIS FRANCHINI ◽  
...  

ABSTRACT Changes in row spacing may result in changes in crop and weed behavior and crop-weed competition. A study was performed to determine the periods of weed presence and weed control in cotton sown with 0.76 m spacing between planting rows. Cotton cultivar FM 993 was sown on 01/08/2010 with the aim of reaching a density of 190,000 seeds ha-1. Treatments with either weed presence or weed control during the first 0, 5, 10, 15, 22, 29, 36, 43, 50, 57, 64, 71, and 190 days of cultivation were established to determine the period prior to weed interference (PPI), total period of interference prevention (TPIP) and critical period of weed control (CPWC). The weed species with high relative importance were Amaranthus retroflexus, Bidens pilosa, Eleusine indica, Digitaria horizontalis, Alternanthera tenella, and Commelina benghalensis. Considering a maximum yield loss of 5%, the PPI was established 11 days after cotton emergence (DAE), the TPWC at 46 DAE, and the CPWC between 11 and 46 DAE, for a total duration of 35 days. Considering a maximum acceptable yield loss equal to the standard deviation for the weed-free treatment, the PPI was established at 6 DAE, the TPWC at 55 DAE, and the CPWC between 6 and 55 DAE for a total duration of 49 days

Weed Science ◽  
2009 ◽  
Vol 57 (1) ◽  
pp. 81-86 ◽  
Author(s):  
Theodore M. Webster ◽  
Timothy L. Grey ◽  
J. Timothy Flanders ◽  
A. Stanley Culpepper

Benghal dayflower (formerly known as tropical spiderwort) is one of the most troublesome weeds in Georgia cotton. Field studies were conducted from 2003 to 2005 to evaluate the relationship between the duration of Benghal dayflower interference and cotton yield to establish optimum weed-control timing. To determine the critical period of weed control (CPWC), Benghal dayflower interference with cotton was allowed or prohibited in 2-wk intervals between 0 to 12 wk after crop planting. Maximum yield loss from Benghal dayflower in May-planted cotton was 21 to 30% in 2004 and 2005, whereas cotton planting delayed until June resulted in maximum yield losses of 40 to 60%. June-planted cotton had a CPWC of 190 to 800 growing degree days (GDD) in 2004 (52-d interval beginning at 16 d after planting [DAP]) and 190 to 910 GDD in 2005 (59-d interval beginning at 18 DAP). In contrast, May-planted cotton in 2005 had a narrower CPWC interval of 396 to 587 GDD (18 d) that occurred 3 wk later in the growing season (initiated at 39 DAP). May-planted cotton in 2004 did not have a critical range of weed-free conditions. Instead, a single weed removal at 490 GDD (44 DAP) averted a yield loss greater than 5%. It is recommended that fields infested with Benghal dayflower be planted with cotton early in the growing season to minimize weed interference with the crop.


2013 ◽  
Vol 31 (3) ◽  
pp. 533-542 ◽  
Author(s):  
N.V. Costa ◽  
L. Ritter ◽  
E.J.L. Peres ◽  
P.V. Silva ◽  
E.S. Vasconcelos

This study aimed to determine the periods of weed interference in the first cycle of 'Fécula Branca' cassava. The experiment was arranged in a randomized block design, with four repetitions. The treatments consisted of eight periods of weed control (25, 50, 75, 100, 125, 150, and 175 days after planting - DAP) and eight periods of coexistence between the weed community and the crop (25, 50, 75, 100, 125, 150, and 175), besides control without weeds and control with weeds until harvest (322 DAP). The predominant weed species with higher relative importance were: Avena sativa, Sorghum halepense, Conyza Canadensis, Euphorbia heterophylla, Raphanus raphanistrum, and Commelina benghalensis. It was concluded that, accepting losses of 1% for root and starch production, the period before interference (PBI) was 66 and 70 DAP; the total period of interference prevention (TPIP) was 88 and 91 DAP and the critical period of interference (CPI) was between 66-88 and 70-91 DAP, respectively. For losses of 5% for root and starch production, the PBI was 87 and 88 DAP, and the TPIP 80 and 81 DAP, respectively; in this case, there was no CPI. Considering the average prices of R$ 218.90 t-1 and R$ 1,191.84 t-1, paid in 2012 for root and starch production, respectively, and control cost of R$ 300.00 ha-1 , the root and starch production for the period prior to economic loss (WEEPPEL) could be estimated to be 20 and 24 DAP, respectively.


2017 ◽  
Vol 30 (4) ◽  
pp. 866-875 ◽  
Author(s):  
LUIZ JUNIOR PEREIRA MARQUES ◽  
SILVANO BIANCO ◽  
ARTHUR BERNARDES CECÍLIO FILHO ◽  
MATHEUS SARAIVA BIANCO ◽  
GISLANE DA SILVA LOPES

ABSTRACT Uncontrolled weed growth interferes with the growth eggplants and crop yields. To control weeds, the main weed species must be identified in crop growing areas and during weed control periods, as weed species might vary in relation to management practices. Therefore, this study aimed to identify the main weed species and determine the periods of weed interference in the eggplant cultivar Nápoli when grown under certain cultural practices, including plant staking and sprout thinning. The experiment was carried out in 2014 using a randomized complete block design, with 3 replications. The treatments consisted of 11 periods of (1) increasing weed control and (2) increasing coexistence of eggplant with weeds from the first day of transplanting (0-14, 0-28, 0-42, 0-56, 0-70, 0-84, 0-98, 0-112, 0-126, 0-140, and up do day 154). Eggplant staking and sprout thinning were performed 42 days after transplanting (DAT). Weed identification and crop yield assessments were performed to determine the Period Before Interference (PBI), Total Period of Interference Prevention (TPIP), and the Critical Period of Interference Prevention (CPIP). The major weeds found in the eggplant cultivar Nápoli were Eleusine indica, Portulaca oleracea, and Cyperus rotundus. Coexistence between the weed community and the eggplant throughout the entire crop production cycle reduced eggplant fruit yield by 78%. The PBI was 29 DAT and the TPIP was 48 DAT, resulting in 19 days of CPIP.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1326
Author(s):  
Calvin F. Glaspie ◽  
Eric A. L. Jones ◽  
Donald Penner ◽  
John A. Pawlak ◽  
Wesley J. Everman

Greenhouse studies were conducted to evaluate the effects of soil organic matter content and soil pH on initial and residual weed control with flumioxazin by planting selected weed species in various lab-made and field soils. Initial control was determined by planting weed seeds into various lab-made and field soils treated with flumioxazin (71 g ha−1). Seeds of Echinochloa crus-galli (barnyard grass), Setaria faberi (giant foxtail), Amaranthus retroflexus (redroot pigweed), and Abutilon theophrasti (velvetleaf) were incorporated into the top 1.3 cm of each soil at a density of 100 seeds per pot, respectively. Emerged plants were counted and removed in both treated and non-treated pots two weeks after planting and each following week for six weeks. Flumioxazin control was evaluated by calculating percent emergence of weeds in treated soils compared to the emergence of weeds in non-treated soils. Clay content was not found to affect initial flumioxazin control of any tested weed species. Control of A. theophrasti, E. crus-galli, and S. faberi was reduced as soil organic matter content increased. The control of A. retroflexus was not affected by organic matter. Soil pH below 6 reduced flumioxazin control of A. theophrasti, and S. faberi but did not affect the control of A. retroflexus and E. crus-galli. Flumioxazin residual control was determined by planting selected weed species in various lab-made and field soils 0, 2, 4, 6, and 8 weeks after treatment. Eight weeks after treatment, flumioxazin gave 0% control of A. theophrasti and S. faberi in all soils tested. Control of A. retroflexus and Chenopodium album (common lambsquarters) was 100% for the duration of the experiment, except when soil organic matter content was greater than 3% or the soil pH 7. Eight weeks after treatment, 0% control was only observed for common A. retroflexus and C. album in organic soil (soil organic matter > 80%) or when soil pH was above 7. Control of A. theophrasti and S. faberi decreased as soil organic matter content and soil pH increased. Similar results were observed when comparing lab-made soils to field soils; however, differences in control were observed between lab-made organic matter soils and field organic matter soils. Results indicate that flumioxazin can provide control ranging from 75–100% for two to six weeks on common weed species.


2012 ◽  
Vol 4 (3) ◽  
pp. 70-75 ◽  
Author(s):  
Hossein GHAMARI ◽  
Goudarz AHMADVAND

Dry bean is one of the most important pulse crops in Iran. Field study was conducted in 2011 to evaluate effects of weed competition from a natural flora on growth and yield of dry bean (Phaseolus vulgaris L.). The treatments consisted of weed infestation and weed removal periods (10, 20, 30, 40 and 50 days) after crop emergence. Control plots kept weed-infested and weed-free throughout growing season. To assess the weed competition effect on crop characteristics, Richards, Gompertz and logistic equations were fitted to the data. The most abundant weed species were Chenopodium album and Amaranthus retroflexus. Increase in duration of weed interference decreased the stem height of dry bean. At the end of the growing season, dry bean was 20 cm taller in season-long weed-free treatment compared to the season-long weed-infested treatment. As the number of days of weed interference increased, a declining trend of LAI and number of pods was observed. The minimum number of pods was obtained in season-long weed-infested treatment (5.01 pods/plant). Weed interference during the whole growing season, caused a 60% reduction in yield. Considering 5% and 10% acceptable yield lost, the critical period of weed competition was determined from 20 to 68 and 23 to 55 days after planting (DAE), respectively.


2019 ◽  
Vol 99 (4) ◽  
pp. 437-443
Author(s):  
Nader Soltani ◽  
Robert E. Nurse ◽  
Amit J. Jhala ◽  
Peter H. Sikkema

A study consisting of 13 field experiments was conducted during 2014–2016 in southwestern Ontario and southcentral Nebraska (Clay Center) to determine the effect of late-emerging weeds on the yield of glyphosate-resistant soybean. Soybean was maintained weed-free with glyphosate (900 g ae ha−1) up to the VC (cotyledon), V1 (first trifoliate), V2 (second trifoliate), V3 (third trifoliate), V4 (fourth trifoliate), and R1 (beginning of flowering) growth stages, after which weeds were allowed to naturally infest the soybean plots. The total weed density was reduced to 24%, 63%, 67%, 72%, 76%, and 92% in Environment 1 (Exeter, Harrow, and Ridgetown) when soybean was maintained weed-free up to the VC, V1, V2, V3, V4, and R1 soybean growth stages, respectively. The total weed biomass was reduced by 33%, 82%, 95%, 97%, 97%, and 100% in Environment 1 (Exeter, Harrow, and Ridgetown) and 28%, 100%, 100%, 100%, 100%, and 100% in Environment 2 (Clay Center) when soybean was maintained weed-free up to the VC, V1, V2, V3, V4, and R1 stages, respectively. The critical weed-free periods for a 2.5%, 5%, and 10% yield loss in soybean were the V1–V2, VC–V1, and VC–V1 soybean stages in Environment 1 (Exeter, Harrow, and Ridgetown) and V2–V3, V2–V3, and V1–V2 soybean stages in Environment 2 (Clay Center), respectively. For the weed species evaluated, there was a minimal reduction in weed biomass (5% or less) when soybean was maintained weed-free beyond the V3 soybean growth stage. These results shows that soybean must be maintained weed-free up to the V3 growth stage to minimize yield loss due to weed interference.


2015 ◽  
Vol 43 (2) ◽  
pp. 355-360 ◽  
Author(s):  
Dogan ISIK ◽  
Adem AKCA ◽  
Emine KAYA ALTOP ◽  
Nihat TURSUN ◽  
Husrev MENNAN

Accurate assessment of crop-weed control period is an essential part for planning an effective weed management for cropping systems. Field experiments were conducted during the seasonal growing periods of potato in 2012 and 2013 in Kayseri, Turkey to assess critical period for weed control (CPWC) in potato. A four parameter log-logistic model was used to assist in monitoring and analysing two sets of related, relative crop yield. Data was obtained during the periods of increased weed interference and as a comparison, during weed-free periods. In both years, the relative yield of potato decreased with a longer period of weed-interference whereas increased with increasing length of weed free period. In 2012, the CPWC ranged from 112 to 1014 GDD (Growing Degree Days) which corresponded to 8 to 66 days after crop emergence (DAE) and between 135-958 GDD (10 to 63 DAE) in the following year based on a 5% acceptable yield loss. Weed-free conditions needed to be established as early as the first week after crop emergence and maintained as late as ten weeks after crop emergence to avoid more than 5% yield loss in the potato. The results suggest that CPWC could well assist potato producers to significantly reduce the expense of their weed management programs as well as improving its efficacy.


2020 ◽  
Vol 34 (4) ◽  
pp. 624-629 ◽  
Author(s):  
J. Anita Dille ◽  
Phillip W. Stahlman ◽  
Curtis R. Thompson ◽  
Brent W. Bean ◽  
Nader Soltani ◽  
...  

AbstractPotential yield losses in grain sorghum due to weed interference based on quantitative data from the major grain sorghum-growing areas of the United States are reported by the WSSA Weed Loss Committee. Weed scientists and extension specialists who researched weed control in grain sorghum provided data on grain sorghum yield loss due to weed interference in their region. Data were requested from up to 10 individual experiments per calendar year over 10 yr between 2007 and 2016. Based on the summarized information, farmers in Arkansas, Kansas, Missouri, Nebraska, South Dakota, and Texas would potentially lose an average of 37%, 38%, 30%, 56%, 61%, and 60% of their grain sorghum yield with no weed control, and have a corresponding annual monetary loss of US $19 million, 302 million, 7 million, 32 million, 25 million, and 314 million, respectively. The overall average yield loss due to weed interference was estimated to be 47% for this grain sorghum-growing region. Thus, US farmers would lose approximately 5,700 million kg of grain sorghum valued at approximately US $953 million annually if weeds are not controlled. With each dollar invested in weed management (based on estimated weed control cost of US $100 ha−1), there would be a return of US $3.80, highlighting the return on investment in weed management and the importance of continued weed science research for sustaining high grain sorghum yield and profitability in the United States.


Weed Science ◽  
1996 ◽  
Vol 44 (1) ◽  
pp. 126-132 ◽  
Author(s):  
Anita Dieleman ◽  
Allan S. Hamill ◽  
Glenn C. Fox ◽  
Clarence J. Swanton

Weed control decision rules were derived for the application of postemergence herbicides to control pigweed species in soybean. Field experiments were conducted at two locations in 1992 and 1993 to evaluate soybean-pigweed interference. A damage function was determined that related yield loss to time of pigweed emergence, density, and soybean weed-free yield. A control function described pigweed species response to variable doses of imazethapyr and thifensulfuron. The integration of these two functions formed the basis of an economic model used to derive two weed control decision rules, the biologist's “threshold weed density” and the economist's “optimal dose.” Time of weed emergence had a more significant role than weed density in the economic model. Later-emerging pigweed caused less yield loss and therefore, decision rules lead to overuse of herbicides if emergence time is not considered. The selected herbicide dose influenced the outcome of the control function. Depending on the desired level of weed control, a herbicide could be chosen to either eradicate the escaped weed species (label or biologically-effective doses) or reduce the growth of the weed species and thereby offset interference (optimal dose). The development of a biologically-effective dose by weed species matrix was recommended. Decision rules should not be utilized as an exclusive weed management strategy but rather as a component of an integrated weed management program.


Weed Science ◽  
2007 ◽  
Vol 55 (4) ◽  
pp. 359-364 ◽  
Author(s):  
Theodore M. Webster ◽  
Wilson H. Faircloth ◽  
J. Timothy Flanders ◽  
Eric P. Prostko ◽  
Timothy L. Grey

Bengal dayflower (also known as tropical spiderwort) is one of the most troublesome weeds in peanut in Georgia, United States. Field studies conducted in 2004 and 2005 evaluated the relationship between the duration of Bengal dayflower interference and peanut yield in an effort to optimize the timing of weed control. In 2004, the critical period of weed control (CPWC) necessary to avoid greater than 5% peanut yield loss was between 316 and 607 growing degree days (GDD), which corresponded to an interval between June 8 and July 2. In 2005, the CPWC ranged from 185 to 547 GDD, an interval between May 30 and July 3. Maximum yield loss in 2005 from season-long interference of Bengal dayflower was 51%. In 2004, production of peanut pods was eliminated by interference with Bengal dayflower for the initial 6 wk (495 GDD) of the growing season. Robust Bengal dayflower growth in 2004 shaded the peanut crop, likely intercepting fungicide applications and causing a reduction in peanut yield. Therefore, the competitive effects of Bengal dayflower are likely complicated with the activity of plant pathogens. In spite of higher Bengal dayflower population densities, greater Bengal dayflower growth, and greater peanut yield losses in 2004 than in 2005, the CPWC was a relatively similar 4-wk period that ended during the first week of July, for peanut that was planted in the first week of May.


Sign in / Sign up

Export Citation Format

Share Document