scholarly journals WATER DEFICIT ON GROWTH AND PHYSIOLOGICAL INDICATORS OF Bidens pilosa L. AND Bidens subalternans DC.

2021 ◽  
Vol 34 (2) ◽  
pp. 388-397
Author(s):  
MÁRCIO ALEXANDRE MOREIRA DE FREITAS ◽  
HAMURÁBI ANIZIO LINS ◽  
MATHEUS DE FREITAS SOUZA ◽  
GABRIELLA DAIER OLIVEIRA PESSOA CARNEIRO ◽  
VANDER MENDONÇA ◽  
...  

ABSTRACT Stress caused by soil water deficit has been one of the main factors that inhibit plant growth. The knowledge of the factors related to the behavior of weed species under water stress conditions can contribute to the elaboration of effective control strategies. Two experiments were carried out to evaluate the effects of the degree and duration of water deficit on physiological and growth indicators of two weed species (Bidens pilosa L. and Bidens subalternans DC.). The stress degree was simulated by four soil moisture: 100, 75, 50, 25% of total soil capacity. The water deficit duration was evaluated by five intervals of water supply: 0, 1, 2, 3, 4, 5, and 6 days. The experiments were carried out in a randomized complete block design with six replicates. The evaluated variables were: the photosynthetic rate (A; μmol CO2 m-2), stomatal conductance (gs; μmol H2O m-2 s-1), transpiration (E; mmol H2O m-2 s-1), number of leaves per plant, and dry matter of the roots, stems, leaves, and total. The results showed that the species of B. pilosa and B. subalternans tolerate low water availability conditions. Low stomatal opening and loss of leaves are mechanisms that ensure the survival of Bidens plants to the water deficit. However, water stress close to 25% of field capacity caused the death of species. The B. subalternans had higher sensitivity to the water deficit, showing a lower dry matter of leaf, stem, and root than B. pilosa.

2016 ◽  
Vol 37 (6) ◽  
pp. 3941 ◽  
Author(s):  
Viviane Ruppenthal ◽  
Tiago Zoz ◽  
Fábio Steiner ◽  
Maria Do Carmo Lana ◽  
Deise Dalazen Castagnara

Beneficial effects of silicon (Si) in the plants growth under conditions of drought stress have been associated with to uptake and accumulation ability of element by different species. However, the effects of Si on soybean under water stress are still incipient and inconclusive. This study investigated the effect of Si application as a way to confer greater soybean tolerance to drought stress. The experiment was carried out in 20-L pots under greenhouse conditions. Treatments were arranged in a randomized block design in a 2 × 4 factorial: two water regimes (no stress or water stress) and four Si rates (0, 50, 100 and 200 mg kg–1). Soybean plants were grown until beginning flowering (R1) growth stage with soil moisture content near at the field capacity, and then it started the differentiation of treatments under drought by the suspension of water supply. Changes in relative water content (RWC) in leaf, electrolyte leakage from cells, peroxidase activity, plant nutrition and growth were measured after 7 days of drought stress and 3 days recovery. The RWC in soybean leaves decreased with Si rates in the soil. Silicon supply in soil with average content of this element, reduced dry matter production of soybean under well-irrigated conditions and caused no effect on dry matter under drought stress. The nitrogen uptake by soybean plants is reduced with the Si application under drought stress. The results indicated that the Si application stimulated the defense mechanisms of soybean plants, but was not sufficient to mitigate the negative effects of drought stress on the RWC and dry matter production.


2014 ◽  
Vol 32 (3) ◽  
pp. 515-520 ◽  
Author(s):  
R.M. Faria ◽  
R.E. Barros ◽  
L.D. Tuffi Santos

Plants kept under competition tend to modify their morphology to optimize the use of production factors. This study aimed to evaluate the effects of competition between transgenic maize and five weed species on the growth and yield of transgenic maize hybrid. The experiment used a randomized block design with four replicates in a factorial 5 x 2 + 6 scheme consisting of a combination of maize under competition with five weed species (Bidens pilosa, Commelina benghalensis, Brachiaria brizantha, Sorghum arundinaceum and Ipomoea triloba) in two weed densities (15 or 30 plants m-2) plus six treatments corresponding to maize and weed species without competition. All the means for dry matter accumulated by maize plants in the stem and leaf in the density of 15 plants m ² were higher than the means for plants in coexistence with 30 plants m-². Number of kernels, diameter and length of cob were not affected by competition with weeds. The weeds that most interfered with maize biomass production were S.arundinaceum and B.brizantha. Leaf dry mass accumulation was more sensitive than the production of stem. It was observed that maize was usually very competitive with weeds, and there was a strong decrease in dry matter accumulation of all the weeds in the study when in coexistence with the crop.


2004 ◽  
Vol 22 (4) ◽  
pp. 529-537 ◽  
Author(s):  
P.S.L. Silva ◽  
Z. Barbosa ◽  
O.F. Oliveira ◽  
R.P. Antonio ◽  
P.I.B. Silva

Weeds have a negative influence on several fruit tree characteristics, such as yield, making it difficult to management practices in orchards. Alternative weed management methods, aiming to reduce the use of herbicides, have become attractive since herbicides are costly and cause environmental degradation. The use of cultivars with greater competitive ability against weeds has attracted international attention. The objective of this work was to evaluate the floristic composition and growth of weeds under the canopies of irrigated custard apple tree progenies. Twenty halfsibling progenies around three years of age were evaluated in a random block design with five replicates and four plants per plot. A circle with a 0.5 m² area was established around the trunk of each plant. Floristic composition, fresh matter, and dry matter mass of the above-ground part of the weeds, were evaluated in this area. Root collar and canopy diameters, as well as leaf area of the progenies were also evaluated. Fifty-eight weed species were recorded. The five weed families with the most species were Leguminosae, Convolvulaceae, Euphorbiaceae, Malvaceae and Sterculiaceae, in decreasing order. The number of weed species per plot ranged from 6 to 18, but there was no difference between the mean percentages of different weeds under the canopies of the progenies. The lowest weed fresh and dry matter masses occurred in progenies JG1 and SM8, respectively. There were no differences between progenies with regard to root collar diameter and leaf area; however, one of the lowest weed dry matter yields was observed under the canopy of progeny FE4, which showed the largest canopy diameter.


2019 ◽  
Vol 11 (4) ◽  
pp. 197
Author(s):  
Diogo Mendes da Silva ◽  
Suzan Kelly Vilela Bertolucci ◽  
Smail Aazza ◽  
Alexandre Alves de Carvalho ◽  
Simony Carvalho Mendonça ◽  
...  

The purpose of the present work was to evaluate the vegetative growth of Mentha piperita L. cultivated under different water availability, as well its influence in content, chemical composition and in vitro antioxidant activity of its essential oil. Plants were propagated by mother plants microcutting and scions were transplanted to 5 L pots with soil and cattle manure. Afterward, were kept at field capacity for 30 days and under treatment for 40 days. It was treated with different levels of water deficit treatments: (T1): 100 of field capacity (FC); (T2): 80 of FC; (T3): 60 of FC; (T4) 40 of FC with 5 blocks. Vegetative growth was evaluated by dry matter contents of all part of plants and by root/aerial rate. The essential oil of the leaves was extracted by hydrodistillation, analyzed by GC-FID and GC-MS and in vitro antioxidant potential was evaluated. A significant decrease in the dry matter of leaves and stems accompanied with a decrease in the roots dry matter was observed with an increase in the water stress. Quantitative chemical differences were observed in the chemical composition of the essential oil, according water availability. Total antioxidant activity showed a gradual increase as water stress progressed.


2014 ◽  
Vol 68 (1) ◽  
pp. 65-75
Author(s):  
Soleiman Mohammadi ◽  
Reza Kas Nazani ◽  
Ayda Hosseinzadeh Mahootchi ◽  
Keiwan Ftohi

ABSTRACT In order to evaluate promising lines in terms of grain yield and water-soluble carbohydrates remobiliza-tion, an experiment with fifteen promising lines and two checks was carried out under full irrigation and terminal water stress conditions at Miyandoab Agricultural Research and Natural Resources Station. Mobilized dry matter content and remobilization percentage from shoot to grain under water deficit (177mg)(11.2%) were greater than those under well watering condition. The lowest (110 mg) and the highest (260mg) mobilized dry matter to grain were obtained for C-79-18 and C-83-15lines, respectively. Water deficit reduced grain yield of barley genotypes by 200-1600 kg/ha, and mean grain yield reduction was 800 kg/ha. Line 14 with 5.880and 5.300t/ha grain yield in favorable and water stress conditions was superior to the other lines. Under water deficit condition, line 14 had greater grain yieldby20% and 38% than the Bahman and Makouee cultivars, respectively. The results showed that greater grain yield in tolerant lines under water deficit was due to remobilization of unstructured carbohydrates from shoot to grain. Thus, it seems that selection of lines with higher translocated dry matter and contribution of pre-anthesis assimilate in grain filling under water stress, the suitable way for achieving genotypes with high grain yield under water stress condition.


2011 ◽  
Vol 39 (2) ◽  
pp. 153 ◽  
Author(s):  
Nourali SAJEDI ◽  
Hamid MADANI ◽  
Ahmad NADERI

This study was carried out to investigate effects of microelements under water deficit stress at different growth stages on antioxidant enzyme alteration, chemical biomarker and grain yield of maize in the years 2007 and 2008. The experiment was conducted in a split plot factorial based on a randomized complete block design with four replications. There were three factors, water deficit stress at different stages of growth as main plot and combinations of selenium (with and without using) and microelements (with and without using) as sub plots. The result indicated that the activity of superoxide dismutase and malondialdehyde content under water deficit stress increased, but grain yield was reduced. The highest grain yield was obtained from optimum irrigation, while in the case of with water deficit stress at V8 stage it was non significant. Selenium spray increased activity of superoxide dismutase enzyme, malondialdehyde content of leaves in V8, R2 and R4 stages and also grain yield. Application of microelements increased the leaves superoxide dismutase enzyme activity and malondialdehyde content. Selenium and microelements spray under water deficit stress conditions during vegetative growth and dough stage increased grain yield in comparison to not spraying elements under water stress conditions. The present results also showed that by using selenium and microelements under water stress can obtain acceptable yield compared to not using these elements.


2014 ◽  
Vol 47 (1) ◽  
pp. 107-114
Author(s):  
Z. Fooladivanda ◽  
M. Hassanzadehdelouei ◽  
N. Zarifinia

ABSTRACT Water stress is known as the major threat to reduced growth and yield of plants in arid and semi-arid regions. Potassium is one of the indicators of plant responses to water stress. To evaluate the impact of water stress and levels of potassium on yield and yield components of two varieties of mung bean (Vigna radiata) (promising lines VC6172 and Indian), an experiment in the form of split factorial, based on randomized complete block design with three replicates was conducted in 2011, at the research farm of Safi-Abad Dezfool, Iran (latitude 32°16’ N, longitude 48°26’ E and altitude 82.9 m above sea level) .Water stress in three levels: irrigation at 120 (no stress), 180 (moderate stress) and 240 (severe stress) mm evaporation from pan, were allocated to the main plots and potassium fertilizer at three levels (0, 90, 180 kg /ha) and two varieties of mung bean (promising line VC6172 and Indian) were allotted to the sub-plots. Results showed that water stress and potassium fertilizer significantly affect all traits. The highest grain yield (2093 kg /ha) was obtained from no stress treatment in the case of 180 kg /ha potassium. Total dry matter, number of pods and grain yield, were significantly different between the two varieties. The interaction between fertilizer and variety, on dry matter and grain yield and the interaction between irrigation and variety, on dry matter were significant. We conclude that use of potassium fertilizer can reduce the adverse effects of water stress.


Author(s):  
Joilson Sodré Filho ◽  
Ricardo Carmona ◽  
Robélio Leandro Marchão ◽  
Arminda Moreira de Carvalho

Abstract: The objective of this work was to evaluate the influence of sorghum and cover plant cropping systems before soybean cultivation on the occurrence of weeds during soybean growing in the Brazilian Cerrado. The experiment was carried out in a randomized complete block design, with four replicates. The treatments comprised six cropping systems before soybean: sorghum (Sorghum bicolor), palisade grass (Urochloa brizantha), and Congo grass (Urochloa ruziziensis) as cover plants, alone or intercropped, in addition to fallowing. Weeds were evaluated as to: density, dry matter mass, diversity, importance value, and similarity. The greatest similarity of weeds ocurred in single crops of sorghum, palisade grass, and Congo grass, in comparison with their intercroppings. Congo grass before soybean promoted a greater reduction in weed diversity overtime, when compared with palisade grass. The absence of cover crops before soybean cultivation increased weed infestation during the soybean cycle. The cropping systems with sorghum intercropped with cover crops before the soybean cultivation affect the diversity and the importance value of weed species.


2020 ◽  
Vol 38 (2) ◽  
pp. 280-286
Author(s):  
Anna Bárbara De Souza Cruz ◽  
José de Anchieta Alves de Albuquerque ◽  
Paulo Roberto Ribeiro Rocha ◽  
Leandro Torres de Souza ◽  
Diego Lima de Souza Cruz ◽  
...  

As a control measure against weeds, the use of herbicides is an effective and inexpensive alternative. However, there are no products recommended for the cultivation of cowpea in Brazil, making it necessary to search for alternative solutions. The objective of this study was to evaluate the effect of herbicides applied in the pre- and post-emergence on cowpea nodulation and production under conditions of the Amazonian savannah. Two experiments were carried out in a randomized block design with four replicates, using the cowpea cultivar BRS Aracê subjected to the pre-emergence herbicides: Metribuzin, Sulfentrazone, Smetolachlor, Pendimethalin, Oxadiazon, Alachlor, Metribuzin + Pendimethalin, Metribuzin + Alachlor and Quizalofop-p-ethyl, Bentazon, Fomesafen, Imazethapyr, Imazamox + Bentazon, Quizalofop-p-ethyl + Imazethapyr, Quizalofop-p-ethyl + Imazamox and Quizalofop-p-ethyl + Bentazon, and post-emergence herbicides: Quizalofop-p-ethyl, Bentazon, Fomesafen, Imazethapyr, Imazamox + Bentazon, Quizalofop-p-ethyl + Imazethapyr, Quizalofop-p-ethyl + Imazamox, and Quizalofop-p-ethyl + Bentazon. The number of nodules in each plant, the dry matter of nodules, dry matter of roots and the grain yield were evaluated. According to the results obtained, the management of weeds in pre- or post-emergence according to the herbicide used affects the nodulation and productivity of cowpea under the conditions of the Amazonian savannah. The herbicides Metribuzin in preemergence,and Fomesafen and the mixture of Quizalofop-pethyl + Imazethapyr in post-emergence are not recommended for weed control in cowpea. The application of Oxadiazon, Alachlor, and Pendimethalin in pre-emergence can be considered interesting because they do not inhibit the development of the root system or the nodulation of cowpea which provides agreater grain yield. Regarding weed control strategies at postemergence, the application of the herbicide Imazethapyr and the combination of the herbicides quizalofop-p-ethyl + imazamox, Quizalofop-p-ethyl + Bentazon and Imazamox + Bentazon allow satisfactory levels of grain yield, root system development and nodulation of cowpea.


2017 ◽  
Vol 19 (2) ◽  
pp. 51-60 ◽  
Author(s):  
Afsana Mimi ◽  
MA Mannan ◽  
QA Khaliq ◽  
MA Baset Mia

An experiment was carried out at research field of Agronomy, Department of Bangabandhu Sheikh Mujibur Rahman Agricultural University, Salna, Gazipur from December 2013 to April 2014. Four soybean genotypes viz. i) G 00022 ii) Galarsum iii) BARI Soybean-5 and iv) G 00197 were grown in the field to evaluate the effects of water deficit stress on dry matter accumulation and yield. Plants were subjected to water stress that is irrigation was withdrawn at Blooming stage (R1) and Full Pod (R4 stages up to maturity. Dry matter accumulation, yield and yield components were reduced by the soil water deficit stress and reduction was higher at R1 stage than R4 stage of water stress. Among the genotypes, G 00022 showed the highest tolerance, while G 00197 was highly susceptible in all the water stress conditions. It was found that higher water deficit stress tolerance in G 00022 was associated with higher accumulation of leaf, stem, root and total dry matter under water stress condition.Bangladesh Agron. J. 2016 19(2): 51-60


Sign in / Sign up

Export Citation Format

Share Document