scholarly journals Yield Response of Soybean (Glycine max L.) Genotypes to Water Deficit Stress

2017 ◽  
Vol 19 (2) ◽  
pp. 51-60 ◽  
Author(s):  
Afsana Mimi ◽  
MA Mannan ◽  
QA Khaliq ◽  
MA Baset Mia

An experiment was carried out at research field of Agronomy, Department of Bangabandhu Sheikh Mujibur Rahman Agricultural University, Salna, Gazipur from December 2013 to April 2014. Four soybean genotypes viz. i) G 00022 ii) Galarsum iii) BARI Soybean-5 and iv) G 00197 were grown in the field to evaluate the effects of water deficit stress on dry matter accumulation and yield. Plants were subjected to water stress that is irrigation was withdrawn at Blooming stage (R1) and Full Pod (R4 stages up to maturity. Dry matter accumulation, yield and yield components were reduced by the soil water deficit stress and reduction was higher at R1 stage than R4 stage of water stress. Among the genotypes, G 00022 showed the highest tolerance, while G 00197 was highly susceptible in all the water stress conditions. It was found that higher water deficit stress tolerance in G 00022 was associated with higher accumulation of leaf, stem, root and total dry matter under water stress condition.Bangladesh Agron. J. 2016 19(2): 51-60

2020 ◽  
Vol 22 (2) ◽  
pp. 41-54
Author(s):  
IA Rima ◽  
MA Mannan ◽  
MAA Mamun ◽  
ZU Kamal

An experiment was conducted to study the effects of water deficit stress on morphophysiological parameters in soybean plant in pots at the Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh during February to June, 2018. Seven soybean genotypes namely,i) G00081 ii) G00056 iii) Shohag iv) G00078 v) G00137 vi) G00035 and vii) G00060 were grown in two watering regimes viz. control (80% of the field capacity) and water deficit stress (50% of the field capacity). Morpho-physiological traits including plant height, number of leaf, relative water content, water saturation deficit, chlorophyll, proline, dry matter and yield were investigated. Results indicated that genotypic variability was found in water deficit stress tolerance in soybean. It was found that leaf of the genotype G00081 maintained higher water content, higher accumulation of prolineas well as less reduction of chlorophyll compared to other genotypes studied. Total dry matter accumulation and grain yield plant-1was also higher in this genotype. Genotype G00081 also showed relatively higher water deficit stress tolerance. On the contrary, G00035 was found to be susceptible showing lower yield. Higher water deficit stress tolerance in G00081 was attributed to higher relative leaf water and chlorophylls with accumulation of higher amount of proline. Bangladesh Agron. J. 2019, 22(2): 41-54


Author(s):  
S. Jidhu Vaishnavi ◽  
P. Jeyakumar

Studies were taken up to estimate the morpho-physiological changes in cowpea due to a multiaction bioinoculants (TagTeam) as seed treatment. Seed treatment with TagTeam @ 8.1g/kg showed significant increase in plant height, root length and number of nodules as compared to control. Physiological parameters such as leaf area, total dry matter accumulation, photosynthetic rate and chlorophyll index were also found higher in seed treatment with TagTeam @ 8.1g/kg. Co-inocultion of Rhizobium and Penicillium (TagTeam) @ 8.1g/kg enhanced the uptake of NPK in cowpea. Available NPK was found non significant with initial soil sample and found maximum with control and lower content in TagTeam seed treatment @ 8.1g/kg. Seed treatment with TagTeam @ 8.1g/kg increased the yield by 13.36 per cent over control and improved yield components and seed protein content in cowpea.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 930
Author(s):  
Yun-Yin Feng ◽  
Jin He ◽  
Neil C. Turner ◽  
Kadambot H. M. Siddique ◽  
Feng-Min Li

Phosphorus (P) addition ameliorates the adverse effects of water stress on the seed yield of soybean (Glycine max L.). Previous studies focused on the effect of P on root traits, but little information is available on changes to aboveground traits. In this paper, we show how P addition affects shoot traits and reduces the adverse effects of water stress on the yield. Two soybean genotypes, with contrasting aboveground architectures, were grown in pots to compare the canopy architecture, leaf traits, aboveground dry matter accumulation and yield under two water and three P levels. The addition of P to two soybean genotypes, one with a larger number of branches and greater leaf area on the branches than the other, showed that the increased leaf area distribution on the main stem and branches was associated with increased shoot and root dry weights, which were positively correlated with the number of filled pods, seed number and seed yield and negatively correlated with seed size at maturity under well-watered and cyclic water stress treatments. The leaf P concentration at 65 DAS (flowering stage) and leaf photosynthesis measured shortly after re-watering increased with P addition, while the leaf mass area on the main stem at 65 DAS and maturity and on the branches at maturity increased modestly with P supply and water stress. Evidence is presented that P addition can ameliorate the adverse effects of water stress on yield through increased leaf area, leaf function and aboveground shoot production. We conclude that the increased yields of soybean resulting from increased P and water supplies that were previously shown to be associated with increased root growth and function are mediated through increased shoot growth and function, particularly the greater number of sites for pod production.


1990 ◽  
Vol 70 (1) ◽  
pp. 51-60 ◽  
Author(s):  
D. T. GEHL ◽  
L. D. BAILEY ◽  
C. A. GRANT ◽  
J. M. SADLER

A 3-yr study was conducted on three Orthic Black Chernozemic soils to determine the effects of incremental N fertilization on grain yield and dry matter accumulation and distribution of six spring wheat (Triticum aestivum L.) cultivars. Urea (46–0–0) was sidebanded at seeding in 40 kg N ha−1 increments from 0 to 240 kg ha−1 in the first year and from 0 to 200 kg ha−1 in the 2 subsequent years. Nitrogen fertilization increased the grain and straw yields of all cultivars in each experiment. The predominant factor affecting the N response and harvest index of each cultivar was available moisture. At two of the three sites, 91% of the interexperiment variability in mean maximum grain yield was explained by variation in root zone moisture at seeding. Mean maximum total dry matter varied by less than 12% among cultivars, but mean maximum grain yield varied by more than 30%. Three semidwarf cultivars, HY 320, Marshall and Solar, had consistently higher grain yield and grain yield response to N than Glenlea and Katepwa, two standard height cultivars, and Len, a semidwarf. The mean maximum grain yield of HY 320 was the highest of the cultivars on test and those of Katepwa and Len the lowest. Len produced the least straw and total dry matter. The level of N fertilization at maximum grain yield varied among cultivars, sites and years. Marshall and Solar required the highest and Len the lowest N rates to achieve maximum grain yield. The year-to-year variation in rates of N fertilization needed to produce maximum grain yield on a specific soil type revealed the limitations of N fertility recommendations based on "average" amounts and temporal distribution of available moisture.Key words: Wheat (spring), N response, standard height, semidwarf, grain yield


2021 ◽  
Vol 66 (1) ◽  
pp. 80-86
Author(s):  
Thin Pham Thi Thanh ◽  
Bang Cao Phi ◽  
Hai Nguyen Thi Thanh ◽  
Khuynh Bui The ◽  
Mai Nguyen Phuong ◽  
...  

Indian Lettuce (Lactuca indica L.) is a valuable medicinal herb but there are still no many researches about this plant. In this work, the physiological responses of Indian lettuce plants under water deficit conditions (5, 8, and 11 days of water stress) were investigated. The Indian lettuce wilted after 5 days of water stress (66.66%), the wilting rate increased after 8 (93.33%) and 11 days (100%) of water stress. The longer duration of water deficit stress caused the slower recovery of plants after rewatering. The water deficit stress caused a decrease in chlorophyll fluorescence, non-associated water content as well as flower formation of Indian lettuce. But the water deficit stress increases the associated water content and the flowering time of this plant.


2020 ◽  
Vol 79 (1) ◽  
pp. 87-94
Author(s):  
Leila Romdhane ◽  
Nicola Dal Ferro ◽  
Amor Slama ◽  
Leila Radhouane

Rising temperatures and increasing water scarcity, which are already important issues, are expected to intensify in the near future due to global warming. Optimizing irrigation in agriculture is a challenge. Understanding the response of crop development stages to water deficit stress provides an opportunity for optimizing irrigation. Here we studied the response of two barley varieties (Rihane, Martin), to water deficit stress at three development stages (tillering, stem elongation, and heading) by measuring water status and grain yield components in a field experiment in Tunisia. The three stages were selected due to their importance in crop growth and grain development. Water deficit stress was initiated by withholding water for 21 days at the three stages with subsequent re-watering. Water deficit led to a progressive decrease in leaf water potential. In both varieties, heading was the stage most sensitive to water deficit. Leaf water potential measurements indicated that water deficit stress was more severe during heading, which to some extent may have influenced the comparison between growth stages. During heading, the number of ears per plant and weight of a thousand grains were reduced by more than 70% and 50%, respectively compared with stress at tillering. Comparison of yield components showed differences between the two barley varieties only when the water deficit was produced during the tillering stage.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
R. P. Sah ◽  
M. Chakraborty ◽  
K. Prasad ◽  
M. Pandit ◽  
V. K. Tudu ◽  
...  

1988 ◽  
Vol 15 (5) ◽  
pp. 633 ◽  
Author(s):  
A Cohen ◽  
A Goell

Changes in volume, fresh weight and dry matter (DM) contents were followed in fruits from girdled and non-girdled branches borne on regularly irrigated (RI) as well as water-stressed (S) trees. Water stress was imposed by withholding irrigation for various periods. The results indicate that, even during prolonged periods of drought, DM accumulation in fruits on S trees was only slightly impaired, even when fruit volume growth was reduced to zero or even to shrinkage. After irrigation was resumed, fruits from S trees grew faster than those from RI trees, indicating that some of the DM which had accumulated was available for volume growth. The possibility of using the rate of DM accumulation in the fruit as an indicator for the timing of irrigation is discussed.


2012 ◽  
Vol 4 (1) ◽  
pp. 112-115 ◽  
Author(s):  
Hossein MARDANI ◽  
Hassan BAYAT ◽  
Amir Hossein SAEIDNEJAD ◽  
Ehsan Eyshi REZAIE

Impacts of various concentrations of salicylic acid (SA) on cucumber (Cucumis sativus L.) seedling characteristic were evaluated under different water stress levels by using a factorial arrangement based on completely randomized design with three replications at experimental greenhouse of Ferdowsi University of Mashhad, Iran. The studied factors included three water deficit levels (100% FC, 80% FC, and 60% FC) considered as first factor and five levels of SA concentrations (0, 0.25, 0.5, 0.75, and 1 mM) as second factor. Results showed that foliar application of SA at the highest concentration enhanced leaf area, leaf and dry weight while decreased stomatal conductance under high level of water deficit stress. Though, severe water deficit stress sharply raised the SPAD reading values. In general, exogenous SA application could develop cucumber seedling characteristic and improve water stress tolerance.


Sign in / Sign up

Export Citation Format

Share Document