scholarly journals INITIAL GROWTH AND NUTRIENT ACCUMULATION IN PITAYA PLANTS AT DIFFERENT PHENOLOGICAL STAGES1

2021 ◽  
Vol 34 (3) ◽  
pp. 720-727
Author(s):  
DENISE DE CASTRO LIMA ◽  
NOUGLAS VELOSO BARBOSA MENDES ◽  
MARIA FGÊNIA SALDANHA DIÓGENES ◽  
MÁRCIO CLEBER DE MEDEIROS CORRÊA ◽  
WILLIAM NATALE ◽  
...  

ABSTRACT Information on nutritional management of pitaya crops are scarce. However, understanding the growth and nutrient accumulation in these plants at different developmental stages can assist in the development of rational soil fertilizer application programs for pitaya crops and decrease production costs. Thus, the objective of this work was to evaluate the growth and nutrient accumulation in pitaya plants throughout the crop cycle. Cladodes of pitaya plants of the Hylocereus setaceus species were grown in polyethylene pots containing a Typic Hapludult (Argissolo Vermelho-Amarelo Eutrófico) under full sun. The treatments consisted of six sampling times: 0, 60, 120, 180, 240, 300, and 360 days after planting (DAP). A randomized block experimental design with four replications was used. Four plants were sampled and evaluated for growth and nutrient accumulation at each sampling time. The pitaya plants presented an exponential growth up to 360 DAP and high nutrient absorption between 300 and 360 DAP. The nutrient and Na accumulations in the cladodes, in decreasing order, were: 3.91 (K), 2.56 (Ca), 1.95 (N), 1.24 (P), 0.45 (Mg), 0.30 (S), and 0.06 (Na) g plant-1, and 14.86 (Zn), 12.72 (Fe), 12.37 (Mn), 5.37 (B), and 1.04 (Cu) mg plant-1. The highest relative growth rate and relative nutrient absorption rate were found between 60 and 120 DAP.

2019 ◽  
Vol 41 (5) ◽  
Author(s):  
Denise de Castro Lima ◽  
Nouglas Veloso Barbosa Mendes ◽  
Márcio Cleber de Medeiros Corrêa ◽  
Carlos Alberto Kenji Taniguchi ◽  
Ronialison Fernandes Queiroz ◽  
...  

Abstract Knowledge on the amounts of nutrients accumulated by pitaya in its different development stages allows defining the periods in which the essential elements are most required, thus contributing to the elaboration of rational fertilization programs for the crop, reducing production costs. This study aimed to evaluate the growth and nutritional requirement of red pitaya, estimating the accumulation of macro and micronutrients by the plants and determining the periods in which the greatest accumulations occur, as well as the relative growth rate and the relative nutrient absorption rate. Pitaya seedlings were planted in pots containing Argissolo Vermelho-Amarelo Eutrófico (Ultisol) and grown in the open air. The experimental design was randomized blocks, with four replicates and seven sampling times: 0, 60, 120, 180, 240, 300 and 360 DAP (days after planting). At each sampling time, length of cladodes, dry matter of the aerial part and nutrient accumulation in the aerial part were evaluated. Red pitaya plants showed a low growth rate until 60 days and, from this period, its growth increased significantly. Nutrient accumulation occurred in the following descending order: K > Ca > N > Mg = P > S > Na element > Zn > Mn > Fe > B > Cu. K and Zn were, respectively, the most exported macro and micronutrient by pitaya fruits.


2019 ◽  
Vol 37 ◽  
Author(s):  
C.G. COELHO ◽  
L.P. DALVI ◽  
L.S.G. OLIVEIRA ◽  
F.L. OLIVEIRA

ABSTRACT: Improper management of weeds is one of the causes of low bean yield, as it is very susceptible to interference due to their slow initial growth. This study aimed to evaluate the influence of dayflower on grain yield and nutrient accumulation of bean cultivars. The experiment was carried out in a screened house, in 5 L pots, in a 2 x 4 factorial scheme. Factor 1 corresponded to the presence or absence of weeds, and factor 2 bean cultivars: BRS Pontal, BRS Agreste, BRS Ametista and BRS Estilo. The experiment was arranged in a completely randomized design with five replications. The coexistence of bean and weed was maintained throughout the crop cycle. Chlorophyll content, number of pods per plant, number of grains per plant, nutrients contents (N - nitrogen, P - phosphorus, K - potassium, Ca - calcium, Mg - magnesium, Mn - manganese, Fe - iron and Zn - zinc) in grains were evaluated. Competition with weeds negatively influenced chlorophyll content, number of pods, yield and N content in grains. The interaction was significant to P, Mg and Fe contents in grains, demonstrating that competition with weeds may impair allocation of these nutrients, resulting in grains of inferior nutritional quality. The cultivar BRS Agreste was more efficient to accumulate P and Mg in grains in competition with dayflower.


2018 ◽  
Vol 31 (1) ◽  
pp. 246-254 ◽  
Author(s):  
CLARICE BACKES ◽  
ROBERTO LYRA VILLAS BÔAS ◽  
LEANDRO JOSÉ GRAVA DE GODOY ◽  
PABLO FORLAN VARGAS ◽  
ALESSANDRO JOSÉ MARQUES SANTOS

ABSTRACT Knowledge of the nutrient uptake by crops at different stages of growth may provide the basis for rational application of fertilizers, which may lead to reduced production costs and improved use of fertilizers by plants. Based on this knowledge, we conducted this study to determine the biomass and nutrient accumulation curve of the onion cultivar Bella Vista in a system of transplanted seedlings. The experiment was carried out in Ituporanga-SC, Brazil, by using a randomized block design with three replicates. Eleven plant collections were carried out throughout the crop cycle. The variables evaluated included plant length; total dry biomass of leaves, bulbs, and roots; and concentrations of macro- and micronutrients. The maximum dry biomass accumulation in the shoots and bulbs at 140 days after transplanting (DAT) was 4.26 and 27.41 mg per plant, respectively, which contributed to 13% and 85% of the whole plant dry biomass at the end of the cycle, respectively. Potassium (K, 521.6 mg) was accumulated in the largest quantity per plant, followed by nitrogen (N, 465.7 mg), calcium (Ca, 253.3 mg), sulfur (S, 109.0 mg), magnesium (Mg, 86.9 mg), and phosphorus (P, 76.5 mg). The micronutrient accumulation was as follows: iron (Fe, 6,227.5 µg), boron (B, 902.3 µg), zinc (Zn, 573.7 µg), manganese (Mn, 573.7 µg), and copper (Cu, 241.4 µg).


2017 ◽  
Vol 3 (4) ◽  
pp. 187 ◽  
Author(s):  
Arief Pambudi ◽  
Nita Noriko ◽  
Endah Permata Sari

<p><em>Abstrak -</em><strong> </strong><strong>Produksi padi di Indonesia setiap tahun mengalami peningkatan, namun peningkatan ini belum mampu memenuhi kebutuhan nasional sehingga impor masih harus dilakukan. Salah satu masalah dalam produksi beras adalah penggunaan pupuk berlebih yang tidak hanya meningkatkan biaya produksi, namun juga merusak kondisi tanah. Aplikasi bakteri tanah sebagai Plant <em>Growth Promoting Rhizobacteria</em> (PGPR) dapat menjadi salah satu solusi terhadap masalah ini. Penelitian ini bertujuan untuk mengisolasi bakteri tanah dari 3 lokasi sawah daerah Bekasi, membandingkan keberadaan total bakteri pada ketiga lokasi tersebut,  dan melakukan karakterisasi isolat berdasarkan karakter yang dapat memicu pertumbuhan tanaman. Dari ketiga lokasi, diperoleh total 59 isolat dan 5 diantaranya berpotensi sebagai PGPR karena kemampuan fiksasi Nitrogen, melarutkan Fosfat, katalase positif, dan motil. Dari ketiga lokasi pengambilan sampel, BK1 memiliki jumlah total bakteri terendah karena aplikasi pemupukan dan pestisida berlebih yang ditandai tingginya kadar P total, serta tingginya residu klorpirifos, karbofuran, dan paration. Kondisi fisik tanah BK1 juga didominasi partikel liat yang menyebabkan tanah menjadi lebih padat. Peningkatan jumlah penggunaan pupuk tidak selalu diikuti peningkatan produktivitas tanaman.</strong></p><p> </p><p><strong><em>Kata Kunci</em></strong><strong><em> </em></strong>- <em>Bakteri tanah, Rhizosfer sawah, PGPR, Pupuk Hayati</em></p><p><strong> </strong></p><p><em>Abstract</em><strong> - </strong><strong>Rice production in Indonesia has increased annually, but this increase has not reached national demand,so imports still done. </strong><strong>One of the problems in rice production is the use of excessive fertilizers that not only increase production costs, but also decreased the soil conditions. The application of soil bacteria as Plant Growth Promoting Rhizobacteria (PGPR) can be the one solution to face this problem. The objective of this study was isolate soil bacteria from 3 locations of rice field in Bekasi, compare the total bacteria in the three locations, and characterize isolates based on the character that can promote plant growth. From three locations, a total of 59 isolates were obtained and 5 of them were potential as a PGPRs due to its Nitrogen fixation activity, Phosphate solubilization, positive catalase, and motility. From three sampling sites, BK1 has the lowest TPC value because of excessive  fertilizers and pesticides application which indicated by high total P levels, and also high chlorpyrifos, carbofuran and paration residues. The physical condition of BK1 soil is also dominated by clay particles which causes the soil more solid. Increasing of fertilizer application is not always followed by increased plant productivity.</strong></p><p><strong> </strong></p><p><strong><em>Keywords</em></strong> - <em>Biofertilizer, PGPR, Rice field rhizosphere, Soil Bacteria</em></p>


2012 ◽  
Vol 36 (5) ◽  
pp. 951-960
Author(s):  
Paulo Sérgio Lima e Silva ◽  
Alexandre Emanuel Régis Holanda ◽  
Haroldo Nogueira de Paiva ◽  
Fábio Henrique Tavares de Oliveira ◽  
Odaci Fernandes de Oliveira

Planting densities influence several aspects of forest formation, including management practices, timber yield, quality, and extraction, and consequently its production costs. The objective of this study was to evaluate Mimosa caesalpiinifolia and Gliricidia sepium growth as a function of planting density (400, 600, 800, 1000, and 1200 plants ha-1) and plant age. The species were evaluated every 90 days for plant height (PH), crown diameter (CD) and root collar diameter (RCD) (10 cm above the ground), with the first evaluation performed at 90 days and the last at 720 days. When plants were one year of age and beyond, evaluations were conducted also for stem diameter at breast height (DBH) (1.30 m above the ground). A randomized block design with split-plots and three replicates was adopted. Species were assigned to plots, planting densities were assigned to subplots, and evaluation ages were assigned to subsubplots. The four traits in both species had their values decreased as planting density increased, but continually increased as plant age increased. For PH and RCD there was an alternation between species superiority, with gliricidia being superior to sabiá at some ages, while the opposite occurred at other ages. As to CD the species only differed in the last measurement, gliricidia being superior. With regard to DBH, gliricidia was superior starting from the second measurement. There was an effect of the species × ages interaction for the four traits and also an effect of the densities × ages interaction for CD and DBH.


Flora ◽  
2018 ◽  
Vol 246-247 ◽  
pp. 109-117 ◽  
Author(s):  
Joyce Reis Silva ◽  
Markus Gastauer ◽  
Silvio Junio Ramos ◽  
Simone Kuster Mitre ◽  
Antonio Eduardo Furtini Neto ◽  
...  

HortScience ◽  
2017 ◽  
Vol 52 (12) ◽  
pp. 1728-1733 ◽  
Author(s):  
Martin M. Maboko ◽  
Christian Phillipus Du Plooy ◽  
Silence Chiloane

Nutrient application is one of the major inputs required for hydroponic production of cucumbers. Reduced nutrient solution concentration with supplementary foliar fertilizer application may maintain yield and quality of mini-cucumber, while decreasing the production costs. An experiment was conducted to determine the effect of foliar fertilizer in combination with reduced nutrient concentrations on the yield and quality of hydroponically grown mini-cucumber in a plastic tunnel. Mini-cucumber plants were grown in sawdust, fertigated with nutrient solutions containing 100% (control), 75%, 50%, or 25% of the recommended nutrient concentration (NC) and two foliar fertilizer applications (no foliar and foliar application). The highest fresh and dry weight of mini-cucumber plants were obtained with 75% and 100% NC and decreased with 50% to 25% NC application. The number of marketable fruit and marketable yield on mini-cucumbers increased with 75% to 100% NC, followed by 50% NC, as compared with 25% NC. Deformed fruit were significantly lower at 25% NC than at 50%, 75%, and 100% NC. Foliar fertilizer application did not have an effect on mini-cucumber yield, but reduced the yellowing of fruit. Fruit mineral content (P, Fe, and Mn) was significantly improved by 100% NC. Improvement in yield at 75% and 100% NC was as a result of improved plant height, leaf chlorophyll content, plant fresh and dry weight, and the increase in nutrient uptake of N, P, K, and Mn, which was evident in the analysis of cucumber leaves. The reduced NC of 75% can maintain yield and quality of mini-cucumbers, whereas the application of foliar fertilizer had a limited effect.


2018 ◽  
Vol 10 (7) ◽  
pp. 266
Author(s):  
José Israel Pinheiro ◽  
Adriana Guirado Artur ◽  
Carlos Alberto Kenji Taniguchi ◽  
Jaciane Rosa Maria de Souza ◽  
William Natale ◽  
...  

This study aimed to evaluate macronutrients use efficiency and phosphorus accumulation, partition and partial balance in the melon hybrid Goldex F1, in response to mineral and organic fertilizers. The following fertilizations were evaluated: mineral fertilizer; bovine manure; bovine manure associated with mineral fertilizer; poultry litter; and poultry litter associated with mineral fertilizer. Plants were collected and separated into leaves, stem, and flowers and, when there were, unripe and ripe fruits for chemical analysis. Phosphorus accumulation increased along the melon crop cycle. Phosphorus partition between leaves + stems + flowers and unripe fruits + ripe fruits showed that about 80% of P was allocated to the fruits. The decreasing order of use by the plant was S > P > Mg > Ca > N > K. Only the treatment with poultry litter was within the range considered as adequate for P recovery. Mineral and organic fertilizers did not interfere with nutrient accumulation and P partition by the melon plants.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Michele Pittol ◽  
Erin Scully ◽  
Daniel Miller ◽  
Lisa Durso ◽  
Lidia Mariana Fiuza ◽  
...  

In agricultural systems, interactions between plants and microorganisms are important to maintaining production and profitability. In this study, bacterial communities in floodwaters of rice fields were monitored during the vegetative and reproductive stages of rice plant development using 16S amplicon sequencing. The study was conducted in the south of Brazil, during the crop years 2011/12 and 2012/13. Comparative analyses showed strong differences between the communities of floodwaters associated with the two developmental stages. During the vegetative stage, 1551 operational taxonomic units (OTUs) were detected, while less than half that number (603) were identified in the reproductive stage. The higher bacterial richness observed in floodwater collected during the vegetative stage may have been favored by the higher concentration of nutrients, such as potassium, due to rhizodeposition and fertilizer application. Eighteen bacterial phyla were identified in both samples. Both communities were dominated by Gammaproteobacteria. In the vegetative stage, Alphaproteobacteria and Betaproteobacteria were more abundant and, in contrast, Bacilli and Clostridia were the more dominant classes in the reproductive stage. The major bacterial taxa identified have been previously identified as important colonizers of rice fields. The richness and composition of bacterial communities over cultivation time may contribute to the sustainability of the crop.


2021 ◽  
Vol 31 (2) ◽  
pp. 217-224
Author(s):  
Jiwoo Park ◽  
James E. Faust

The amount of fertilizer applied during the commercial production of bedding plants has decreased in recent years because of increasing concerns about environmental impacts and the need to minimize production costs. However, reduced fertilization affects plant growth and flowering during production and in the postproduction environment. Plants grown with lower nutrient levels may perform satisfactorily during greenhouse production, but they may possess insufficient nutrients to sustain further growth in the postproduction environment, where fertilizer application is frequently lacking. This study examined conventional and alternative fertilizer delivery strategies that produce high-quality petunia (Petunia ×hybrida) during greenhouse production and continue to support plant growth and flowering in the postproduction environment. The fertilizer treatments during production consisted of four constant liquid fertilization (CLF) treatments of 0, 50, 100, or 200 ppm nitrogen (N) and three controlled-release fertilization (CRF) treatments (0, 4, or 8 lb/yard3). Three pulse fertilization (PF) treatments (0, 300, or 600 ppm N) were applied immediately before moving the plants to the postproduction environment. During production, petunia growth and development increased as CLF increased from 0 to 200 ppm N, but the addition of CRF resulted in the increase occurring at a declining rate. During postproduction, the interactive effects of CLF and CRF continued in a similar pattern as that seen in the production environment. The additional PF treatments resulted in further increases in plant growth. Across all CLF and CRF treatments, the leaf area increased from 466 to 540 cm2 as PF increased from 0 to 300 ppm N, and the leaf area increased further to 631 cm2 as PF increased from 300 to 600 ppm N. Based on our findings, two alternative strategies are possible. First, 0 to 50 ppm N CLF can be combined with 4 lb/yard3 CRF. The second strategy maintains the standard commercial practice of applying 100 ppm N CLF treatment and then applying a 300- to 600-ppm N PF treatment. These results suggest that a relatively low CLF rate can be used to achieve the desired production characteristics while reducing the cost of plant growth regulation, and that additional plant nutrition can be provided with CRF and/or PF to enhance the postproduction performance.


Sign in / Sign up

Export Citation Format

Share Document