scholarly journals Fate of 15N-urea applied to wheat-soybean succession crop

Bragantia ◽  
2004 ◽  
Vol 63 (2) ◽  
pp. 265-274 ◽  
Author(s):  
Antonio Enedi Boaretto ◽  
Eduardo Scarpari Spolidorio ◽  
José Guilherme de Freitas ◽  
Paulo Cesar Ocheuze Trivelin ◽  
Takashi Muraoka ◽  
...  

The wheat crop in São Paulo State, Brazil, is fertilized with N, P and K. The rate of applied N (0 to 120 kg.ha-1) depends on the previous grown crop and the irrigation possibility. The response of wheat to rates and time of N application and the fate of N applied to irrigated wheat were studied during two years. Residual N recovery by soybean grown after the wheat was also studied. The maximum grain productivity was obtained with 92 kg.ha-1 of N. The efficiency of 15N-urea utilization ranged from 52% to 85%. The main loss of applied 15N, 5% to 12% occurred as ammonia volatilized from urea applied on soil surface. The N loss by leaching even at the N rate of 135 kg.ha-1, was less than 1% of applied 15N, due to the low amount of rainfall during the wheat grown season and a controlled amount of irrigated water, that were sufficient to moisten only the wheat root zone. The residual 15N after wheat harvest represents around 40% of N applied as urea: 20% in soil, 3% in wheat root system and 16% in the wheat straw. Soybean recovered less than 2% of the 15N applied to wheat at sowing or at tillering stage.

Soil Research ◽  
1987 ◽  
Vol 25 (4) ◽  
pp. 499 ◽  
Author(s):  
WS Meyer ◽  
FX Dunin ◽  
RCG Smith ◽  
GSG Shell ◽  
NS White

Wheat is being grown increasingly in the irrigated areas of south-east Australia. Its profitability depends on high yields, which in turn, are highly dependent on accurate water management. This combination, together with the increasing need for greater water use efficiency to minimize accessions to rising water-tables, calls for effective irrigation scheduling. To achieve this, accurate estimates of crop water use and upward fluxes of water into the root zone from shallow water-tables are required. A weighing lysimeter, installed in 1984, measured hourly evaporation (Ea) from a wheat crop which enabled the accuracy of water use estimates to be assessed. Daily potential evaporation (Ep) was calculated from a combination equation previously calibrated over lucerne, while previously developed crop coefficients for wheat were used to convert Ep to estimated Ea. Daily Ea was the major component in a water balance model for irrigated wheat. The model was quite efficient (r2 = 0.911, but with a bias of -8.8%, which indicated that Ea values were generally underestimated. The underestimate was due primarily to the wind function used in the calculation of Ep, and alternative functions for both daily and hourly calculations were derived. The 1984 lysimeter data also showed that change in soil water content was accurately measured with the field-calibrated neutron probe. Comparisons of measured and estimated water use from field experiments in 1981 and 1982 indicated that upward flux from a water-table between 1 a5 and 2.1 m below the soil surface may be up to 30% of daily Ea. This upward flux will need to be taken into account if irrigation scheduling is to promote efficient use of irrigation water.


2019 ◽  
Vol 37 (1) ◽  
pp. 57
Author(s):  
Eduardo Teófilo Salvador ◽  
Guillermo Pedro Morales Reyes ◽  
María Vicenta Esteller Alberich ◽  
René Muciño Castañeda

To evaluate the water percolation in the soil, the water balance method is common. This method requires different daily data, which are often incomplete or not verified in field, in addition to some uncertainty regarding crop evapotranspiration. In this research, the parameters that control deep percolation were identified, based on estimation of daily local water balances with different crop coefficients, using data from weather stations and edaphic parameters. At the study site, constant monitoring of the phenological stages of a wheat crop (temporal) was carried out, and monthly soil sampling was performed for one year at different points within the site. At the same time, data were collected from weather stations, evaporation was measured with the evaporimeter tank, evapotranspiration of the crop was estimated for a single coefficient, dual and adjusted for stress based on the FAO manual, and deep percolation was determined from these data. When the soil surface was saturated or supersaturated, evapotranspiration of the crop was negligible. In addition, maximum vertical plant growth was 1.02 m, and root depth was 0.35 m. Daily rainfall greater than 10 mm or cumulative of three consecutive days greater than 18 mm of rainfall led to deep percolation, but this decreased to almost drip as thickness of the root zone increased from 0.30 m to 0.52 m. Crop growth, root zone thickness and incidence of precipitation on the soil surface controlled deep percolation. The values obtained allow us to more closely approximate the actual value groundwater recharge.


2016 ◽  
Vol 96 (2) ◽  
pp. 122-135 ◽  
Author(s):  
C.F. Drury ◽  
W.D. Reynolds ◽  
G.W. Parkin ◽  
J.D. Lauzon ◽  
J.K. Saso ◽  
...  

Nitrogen (N) leaching from soil into surface and ground waters is a concern in humid areas of Canada. As a result, N management protocols, including the Ontario N Index, are widely used to identify N leaching risk, although field assessment remains limited. Nitrogen fertilizer and chloride (Cl) tracer were fall-applied to five agricultural soils in Ontario with different textures and hydrologic soil groups (HSG) to assess the Ontario N Index and characterize inorganic N movement over 1 yr. The treatments included three N rates (0, 100, and 200 kg N ha−1) plus Cl tracer and 200 kg N ha−1 rate without Cl. After spring thaw, N loss from the crop root zone (top 60 cm) ranged from 68% for Brookston clay loam to 99% for Harrow sandy loam. A strong linear relationship between apparent N recovery and apparent Cl recovery indicated that N loss from the root zone occurred primarily by downward leaching. Leaching was controlled by the minimum measured saturated hydraulic conductivity (Ksat), and good estimates of N leaching were obtained using a quasi-theoretical relationship between N loss and Ksat. We concluded that Ontario N Index estimates of N leaching risk might be improved by including site-specific measurements of Ksat.


2014 ◽  
Vol 1 (3) ◽  
pp. 57-61
Author(s):  
E. Kopylov

Aim. To study the specifi cities of complex inoculation of spring wheat roots with the bacteria of Azospirillum genus and Chaetomium cochliodes Palliser 3250, and the isolation of bacteria of Azospirillum genus, capable of fi xing atmospheric nitrogen, from the rhizospheric soil, washed-off roots and histoshere. Materials and meth- ods. The phenotypic features of the selected bacteria were identifi ed according to Bergi key. The molecular the polymerase chain reaction and genetic analysis was used for the identifi cation the bacteria. Results. It has been demonstrated that during the introduction into the root system of spring wheat the strain of A. brasilensе 102 actively colonizes rhizospheric soil, root surface and is capable of penetrating into the inner plant tissues. Conclusions. The soil ascomucete of C. cochliodes 3250 promotes better settling down of Azospirillum cells in spring wheat root zone, especially in plant histosphere which induces the increase in the content of chlorophyll a and b in the leaves and yield of the crop.


1999 ◽  
Vol 39 (12) ◽  
pp. 257-264 ◽  
Author(s):  
Hans E. Andersen ◽  
Brian Kronvang ◽  
Søren E. Larsen

An empirical leaching model was applied to data on agricultural practices at the field level within 6 small Danish agricultural catchments in order to document any changes in nitrogen (N) leaching from the root zone during the period 1989-96. The model calculations performed at normal climate revealed an average reduction in N-leaching that amounted to 30% in the loamy catchments and 9% in the sandy catchments. The reductions in N leaching could be ascribed to several improvements in agricultural practices during the study period: (i) regulations on livestock density; (ii) regulations on the utilisation of animal manure; (iii) regulations concerning application practices for manure. The average annual total N-loss from agricultural areas to surface water constituted only 54% of the annual average N leached from the root zone in the three loamy catchments and 17% in the three sandy catchments. Thus, subsurface N-removal processes are capable of removing large amounts of N leached from agricultural land. An empirical model for the annual diffuse N-loss to streams from small catchments is presented. The model predicts annual N-loss as a function of the average annual use of mineral fertiliser and manure in the catchment and the total annual runoff from the unsaturated zone.


2021 ◽  
Vol 13 (9) ◽  
pp. 5010
Author(s):  
Kapila Shekhawat ◽  
Vinod K. Singh ◽  
Sanjay Singh Rathore ◽  
Rishi Raj ◽  
T. K. Das

The proven significance of conservation agriculture (CA) in enhancing agronomic productivity and resource use efficiency across diverse agro-ecologies is often challenged by weed interference and nitrogen (N) immobilization. The collective effect of real-time N and weed management has been scarcely studied. To evaluate the appropriateness of sensor-based N management in conjunction with a broad-spectrum weed control strategy for the maize–wheat system, an experiment was conducted at ICAR—Indian Agricultural Research Institute—in New Delhi, India, during 2015–2016 and 2016–2017. Weed management in maize through Sesbania brown manure followed by post-emergence application of 2,4-D (BM + 2,4-D) in maize and tank-mix clodinafop-propargyl (60 g ha−1) and carfentrazone (20 g ha−1) (Clodi+carfentra) in wheat resulted in minimum weed infestation in both crops. It also resulted in highest maize (5.92 and 6.08 t ha−1) and wheat grain yields (4.91 and 5.4 t ha−1) during 2015–2016 and 2016–2017, respectively. Half of the N requirement, when applied as basal and the rest as guided by Optical crop sensor, resulted in saving 56 and 59 kg N ha−1 in the maize–wheat system, respectively, over 100% N application as farmers’ fertilizer practice during the two consecutive years. Interactive effect of N and weed management on economic yield of maize and wheat was also significant and maximum yield was obtained with 50% N application as basal + rest as per Optical crop sensor and weed management through BM+2,4-D in maize and Clodi+carfentra in wheat crop. The study concludes that real-time N management, complemented with appropriate weed management, improved growth, enhanced agronomic productivity and endorsed N saving under a CA-based maize–wheat system in Trans Indo-Gangetic Plains.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 740
Author(s):  
Ken Okamoto ◽  
Shinkichi Goto ◽  
Toshihiko Anzai ◽  
Shotaro Ando

Fertilizer application during sugarcane cultivation is a main source of nitrogen (N) loads to groundwater on small islands in southwestern Japan. The aim of this study was to quantify the effect of reducing the N fertilizer application rate on sugarcane yield, N leaching, and N balance. We conducted a sugarcane cultivation experiment with drainage lysimeters and different N application rates in three cropping seasons (three years). N loads were reduced by reducing the first N application rate in all cropping seasons. The sugarcane yields of the treatment to which the first N application was halved (T2 = 195 kg ha−1 N) were slightly lower than those of the conventional application (T1 = 230 kg ha−1 N) in the first and third seasons (T1 = 91 or 93 tons ha−1, T2 = 89 or 87 tons ha−1). N uptake in T1 and T2 was almost the same in seasons 1 (186–188 kg ha−1) and 3 (147–151 kg ha−1). Based on the responses of sugarcane yield and N uptake to fertilizer reduction in two of the three years, T2 is considered to represent a feasible fertilization practice for farmers. The reduction of the first N fertilizer application reduced the underground amounts of N loads (0–19 kg ha−1). However, application of 0 N in the first fertilization would lead to a substantial reduction in yield in all seasons. Reducing the amount of N in the first application (i.e., replacing T1 with T2) improved N recovery by 9.7–11.9% and reduced N leaching by 13 kg ha−1. These results suggest that halving the amount of N used in the first application can improve N fertilizer use efficiency and reduce N loss to groundwater.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 713
Author(s):  
Edward G. Barrett-Lennard ◽  
Rushna Munir ◽  
Dana Mulvany ◽  
Laine Williamson ◽  
Glen Riethmuller ◽  
...  

This paper focuses on the adverse effects of soil sodicity and alkalinity on the growth of barley (Hordeum vulgare L.) in a rainfed environment in south-western Australia. These conditions cause the accumulation of salt (called ‘transient salinity’) in the root zone, which decreases the solute potential of the soil solution, particularly at the end of the growing season as the soil dries. We hypothesized that two approaches could help overcome this stress: (a) improved micro-water harvesting at the soil surface, which would help maintain soil hydration, decreasing the salinity of the soil solution, and (b) soil amelioration using small amounts of gypsum, elemental sulfur or gypsum plus elemental sulfur, which would ensure greater salt leaching. In our experiments, improved micro-water harvesting was achieved using a tillage technique consisting of exaggerated mounds between furrows and the covering of these mounds with plastic sheeting. The combination of the mounds and the application of a low rate of gypsum in the furrow (50 kg ha−1) increased yields of barley grain by 70% in 2019 and by 57% in 2020, relative to a control treatment with conventional tillage, no plastic sheeting and no amendment. These increases in yield were related to changes in ion concentrations in the soil and to changes in apparent electrical conductivity measured with the EM38.


2021 ◽  
Vol 5 (2) ◽  
pp. 428-433
Author(s):  
John M. Peter ◽  
M. U. Hamisu

In this study, two models are computed which are modified penman's monteith and Hargreaves – Samani model. The essence is to provide qualitative information related to the antagonistic effect of climate change on sustainable crop production through qualitative understanding of evaporation and transpiration processes in simple term evapotranspiration (ETo). This is computed using climatic parameters obtained from Abubakar Tafawa Balewa University; Agro weather station, Bauchi for the period of three years. This describes the two processes of water loss on plants, at first, through transpiration and on another note, on the soil surface by evaporation. The study deduced a comparative analysis on aforementioned Methods to determine the evaporating power of the atmosphere in improving crops yield and production through estimating the amount of water needed at the root zone of the plant and also, the seasonal variation during the study. The result of this study shows a little deviation in the two models. The model based on Modified Penman's Monteith displays optimal evapotranspiration. This makes the model satisfy its creation for estimation of reference evapotranspiration. In May, June, September, and October for 2013-2015, high trends are recorded. While In July and August low trend was recorded between climatic parameter and the estimated evapotranspiration. The statistical analyses also show that there is a linear relationship between the two estimated models. In the above months, it shows that application of water is needed for the healthy growth of crops and improved crops yield


2015 ◽  
Vol 5 (1) ◽  
pp. 24
Author(s):  
J. M. Finnan ◽  
J. I. Burke ◽  
T. M. Thomas

<p>A four year experiment was conducted at a site in the south-east of Ireland in which medium and high input conventional winter wheat production systems were compared to no input and low input systems in which winter wheat was direct drilled into an understory of white clover. Whole crop and grain yields from all systems were strongly related to external input levels, yields from bicropped treatments were poor. Nitrogen uptake and grain yields from the conventional treatments declined during the course of the study whereas nitrogen uptake and yields from bicropped treatments were more stable. Fertiliser N application significantly depressed biological production efficiency and altered biomass partitioning. The proportion of biomass partitioned to the stem decreased with fertiliser N, differences between treatments persisted until final harvest. Although the clover sward was still present in the fourth year, this component of the bicrop was gradually replaced by weeds as the experiment progressed in spite of several attempts to control weeds. It is suggested that further research is needed to identify a clover management strategy which ensures the persistence of the white clover sward and allows it to enrich soil fertility in such a way as to be of benefit to the accompanying wheat crop.</p>


Sign in / Sign up

Export Citation Format

Share Document