scholarly journals Assessing the effects of global warming and local social and economic conditions on the malaria transmission

2000 ◽  
Vol 34 (3) ◽  
pp. 214-222 ◽  
Author(s):  
Hyun M Yang ◽  
Marcelo U Ferreira

OBJECTIVE: To show how a mathematical model can be used to describe and to understand the malaria transmission. METHODS: The effects on malaria transmission due to the impact of the global temperature changes and prevailing social and economic conditions in a community were assessed based on a previously presented compartmental model, which describes the overall transmission of malaria. RESULTS/CONCLUSIONS: The assessments were made from the scenarios produced by the model both in steady state and dynamic analyses. Depending on the risk level of malaria, the effects on malaria transmission can be predicted by the temperature ambient or local social and-economic conditions.

1993 ◽  
Vol 111 (3) ◽  
pp. 503-524 ◽  
Author(s):  
M. N. Burattini ◽  
E. Massad ◽  
F. A. B. Coutinho

SummaryA mathematical model was used to estimate malaria transmission rates based on serological data. The model is minimally stochastic and assumes an age-dependent force of infection for malaria. The transmission rates estimated were applied to a simple compartmental model in order to mimic the malaria transmission.The model has shown a good retrieving capacity for serological and parasite prevalence data.


2001 ◽  
Vol 35 (3) ◽  
pp. 224-231 ◽  
Author(s):  
Hyun M Yang

OBJECTIVE: Sensitivity analysis was applied to a mathematical model describing malaria transmission relating global warming and local socioeconomic conditions. METHODS: A previous compartment model was proposed to describe the overall transmission of malaria. This model was built up on several parameters and the prevalence of malaria in a community was characterized by the values assigned to them. To assess the control efforts, the model parameters can vary on broad intervals. RESULTS: By performing the sensitivity analysis on equilibrium points, which represent the level of malaria infection in a community, the different possible scenarios are obtained when the parameters are changed. CONCLUSIONS: Depending on malaria risk, the efforts to control its transmission can be guided by a subset of parameters used in the mathematical model.


Author(s):  
Temidayo Oluwafemi ◽  
Emmanuel Azuaba

Malaria continues to pose a major public health challenge, especially in developing countries, 219 million cases of malaria were estimated in 89 countries. In this paper, a mathematical model using non-linear differential equations is formulated to describe the impact of hygiene on Malaria transmission dynamics, the model is analyzed. The model is divided into seven compartments which includes five human compartments namely; Unhygienic susceptible human population, Hygienic Susceptible Human population, Unhygienic infected human population , hygienic infected human population and the Recovered Human population  and the mosquito population is subdivided into susceptible mosquitoes  and infected mosquitoes . The positivity of the solution shows that there exists a domain where the model is biologically meaningful and mathematically well-posed. The Disease-Free Equilibrium (DFE) point of the model is obtained, we compute the Basic Reproduction Number using the next generation method and established the condition for Local stability of the disease-free equilibrium, and we thereafter obtained the global stability of the disease-free equilibrium by constructing the Lyapunov function of the model system. Also, sensitivity analysis of the model system was carried out to identify the influence of the parameters on the Basic Reproduction Number, the result shows that the natural death rate of the mosquitoes is most sensitive to the basic reproduction number.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Salah U-Din ◽  
Mian Sajid Nazir ◽  
Aamer Shahzad

PurposeIn the last few decades, the frequency and intensity of extreme weather events have increased in most parts of the world including Canada because of global warming. The global warming in Canada is about double the magnitude of global warming; therefore, policymakers are concerned about the potential significant impact of the weather catastrophes on the economy and financial sector. The purpose of this study is to explore the impact of weather catastrophes on the Canadian banking sector.Design/methodology/approachUsing a sample of banking firms from Canada over the period 1988–2019, the present study estimates different econometric techniques to investigate the impact of weather catastrophes on the risk and performance of Canadian banks.FindingsAnalyses of the study do not find a significant impact of the weather catastrophes on the performance of the Canadian banks; however, it has helped banks to lower their risk level and improve stability due to proactive risk management. The findings of this study are not consistent with concerns of the policymakers about climate risk to the Canadian bank sector. More sector-specific research and policy initiatives are recommended to minimize the future financial risk of the increased frequency and intensity of natural disasters.Originality/valueThe study contributes to support the notion that the climate risk of banks is protected with insurance and reconstruction activities provide more banking opportunities.


2019 ◽  
Vol 2019 ◽  
pp. 1-19
Author(s):  
Jaouad Danane ◽  
Karam Allali

In this paper, a mathematical model describing the human immunodeficiency virus (HIV) pathogenesis with adaptive immune response is presented and studied. The mathematical model includes six nonlinear differential equations describing the interaction between the uninfected cells, the exposed cells, the actively infected cells, the free viruses, and the adaptive immune response. The considered adaptive immunity will be represented by cytotoxic T-lymphocytes cells (CTLs) and antibodies. First, the global stability of the disease-free steady state and the endemic steady states is established depending on the basic reproduction number R0, the CTL immune response reproduction number R1z, the antibody immune response reproduction number R1w, the antibody immune competition reproduction number R2w, and the CTL immune response competition reproduction number R3z. On the other hand, different numerical simulations are performed in order to confirm numerically the stability for each steady state. Moreover, a comparison with some clinical data is conducted and analyzed. Finally, a sensitivity analysis for R0 is performed in order to check the impact of different input parameters.


Author(s):  
Enrique Posada ◽  
Andrea Cadavid

There is a perception among the inhabitants of the Aburrá Valley Region, that this heavily populated region, situated in the Andean mountains of Colombia, has been suffering large temperature raises in the last years, especially in the last decade. To give perspective about this issue, the authors have gone through the available information about temperature changes in three meteorological stations in the region and have correlated it with a set of variables of urban, climatic and energetic nature, with the intention of developing an approximate model to understand the temperature changes. Changes in the mean temperature, based on the linear tendencies, were estimated on 0.47ºC for the 20 years between 1995 and 2015; 60% of change was found to be related to local human activities and 40% was attributed to the impact of global warming.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1809
Author(s):  
Jožef Ritonja ◽  
Andreja Goršek ◽  
Darja Pečar ◽  
Tatjana Petek ◽  
Boštjan Polajžer

Knowledge of the mathematical models of the fermentation processes is indispensable for their simulation and optimization and for the design and synthesis of the applicable control systems. The paper focuses on determining a dynamic mathematical model of the milk fermentation process taking place in a batch bioreactor. Models in the literature describe milk fermentation in batch bioreactors as an autonomous system. They do not enable the analysis of the effect of temperature changes on the metabolism during fermentation. In the presented extensive multidisciplinary study, we have developed a new mathematical model that considers the impact of temperature changes on the dynamics of the CO2 produced during fermentation in the batch bioreactor. Based on laboratory tests and theoretical analysis, the appropriate structure of the temperature-considered dynamic model was first determined. Next, the model parameters of the fermentation process in the laboratory bioreactor were identified by means of particle swarm optimization. Finally, the experiments with the laboratory batch bioreactor were compared with the simulations to verify the derived mathematical model. The developed model proved to be very suitable for simulations, and, above all, it enables the design and synthesis of a control system for batch bioreactors.


2011 ◽  
pp. 46-65 ◽  
Author(s):  
L. Polishchuk ◽  
R. Menyashev

The paper deals with economics of social capital which is defined as the capacity of society for collective action in pursuit of common good. Particular attention is paid to the interaction between social capital and formal institutions, and the impact of social capital on government efficiency. Structure of social capital and the dichotomy between its bonding and bridging forms are analyzed. Social capital measurement, its economic payoff, and transmission channels between social capital and economic outcomes are discussed. In the concluding section of the paper we summarize the results of our analysis of the role of social capital in economic conditions and welfare of Russian cities.


2020 ◽  
pp. 108-115 ◽  
Author(s):  
Vladimir P. Budak ◽  
Anton V. Grimaylo

The article describes the role of polarisation in calculation of multiple reflections. A mathematical model of multiple reflections based on the Stokes vector for beam description and Mueller matrices for description of surface properties is presented. On the basis of this model, the global illumination equation is generalised for the polarisation case and is resolved into volume integration. This allows us to obtain an expression for the Monte Carlo method local estimates and to use them for evaluation of light distribution in the scene with consideration of polarisation. The obtained mathematical model was implemented in the software environment using the example of a scene with its surfaces having both diffuse and regular components of reflection. The results presented in the article show that the calculation difference may reach 30 % when polarisation is taken into consideration as compared to standard modelling.


Sign in / Sign up

Export Citation Format

Share Document