scholarly journals Acute respiratory viral infections in children in Rio de Janeiro and Teresópolis, Brazil

2012 ◽  
Vol 54 (5) ◽  
pp. 249-255 ◽  
Author(s):  
Maria Carolina M. Albuquerque ◽  
Rafael B. Varella ◽  
Norma Santos

The frequency of viral pathogens causing respiratory infections in children in the cities of Rio de Janeiro and Teresópolis was investigated. Nasal swabs from children with acute respiratory illnesses were collected between March 2006 and October 2007. Specimens were tested for viral detection by conventional (RT)-PCR and/or real time PCR. Of the 205 nasal swabs tested, 64 (31.2%) were positive for at least one of the viral pathogens. Single infections were detected in 56 samples, 50 of those were caused by RNA viruses: 33 samples tested positive for rhinovirus, five for influenza A, five for metapneumovirus, four for coronavirus and, three for respiratory syncytial virus. For the DNA viruses, five samples were positive for bocavirus and one for adenovirus. Co-infections with these viruses were detected in eight samples. Our data demonstrate a high frequency of viral respiratory infections, emphasizing the need for a more accurate diagnosis particularly for the emerging respiratory viruses. The fact that the emerging respiratory viruses were present in 9.2% of the tested samples suggests that these viruses could be important respiratory pathogens in the country.

2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S92-S93
Author(s):  
Jasjit Singh ◽  
Beth Huff ◽  
Delma Nieves ◽  
Wendi Gornick

Abstract Background In a typical winter respiratory season, Influenza A, Influenza B, Respiratory Syncytial Virus (RSV) and human Metapneumovirus (hMPV) infections are common in pediatrics. During the COVID-19 pandemic, we noted a marked decrease in all except for Rhinovirus/Enterovirus at our free-standing quaternary level children’s hospital. Methods We prospectively reviewed all patients with positive testing for viral respiratory pathogens from October 1, 2018 through May 29, 2021. Testing was done by polymerase chain reaction (PCR) (BioFire® FilmArray® Respiratory 2 Panel, UT) and by SARS-CoV-2 PCR testing (Cepheid®, CA). The latter may have been done for pre-procedure or admission screening. We submitted 74 specimens to the California Department Public Health (CDPH) for definitive identification and serotyping analysis. Results The number of Rhinovirus/Enterovirus (RV/EV) infections was compared with Influenza A & B, RSV, and hMPV over the past 3 years. There was a 152% increase in RV/EV from 2018-2019 to 2020-2021 with near absence of other respiratory viruses (Figure 1). In 2020-2021, RV/EV (N=877, 84%) made up a larger percentage of all viral etiologies compared to 2018-2019 (N=348, 11%) (Figure 2). Healthcare acquired infections (HAI) due to respiratory viruses decreased in 2020-2021 compared to both of the prior seasons, though all cases were due to RV/EV (Figure 3). There were no RV/EV associated deaths. Of 74 submitted, CDPH did typing on 24 samples; all were found to be rhinovirus (RV). Figure 1. High-Risk Winter Viral Infections 2019-2021. Figure 2. Distribution of Winter Viral Pathogens 2018-2019 Compared to 2020-2021 Season. Figure 3. Winter Viral Healthcare Associated Infections 2019-2021. Conclusion We experienced a marked increase in RV/EV during COVID precautions, despite a near absence of other common respiratory viruses. This was reflected in both our community data and HAI due to respiratory viruses. There was a marked increase in RV/EV starting with week 18 (Figure 4). We hypothesize this is due to schools’ re-opening. Understanding RV epidemiology and transmission is important, as it may inform return to school and work protocols for the upcoming respiratory viral season. Figure 4. Rhinovirus/Enterovirus by Week for the 2020-2021 Season. Disclosures All Authors: No reported disclosures


2021 ◽  
Author(s):  
Thomas Smith ◽  
Mohammed A. Rohaim ◽  
Muhammad Munir

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging RNA virus causing COVID-19 disease across the globe. SARS-CoV-2 infected patients exhibit acute respiratory distress syndrome which can be compounded by endemic respiratory viruses and thus highlighting the need to understand the genetic bases of clinical outcome under multiple respiratory infections. In this study, 42 individual datasets and a multi-parametric based selected list of over 12,000 genes against five medically important respiratory viruses (SARS-CoV-2, SARS-CoV-1, influenza A, respiratory syncytial virus (RSV) and rhinovirus were collected and analysed in an attempt to understand differentially regulated gene patterns and to cast genetic markers of individual and multiple co-infections. While a certain cohort of virus-specific genes were regulated (negatively and positively), notably results revealed a greatest correlation among gene regulation by SARS-CoV-2 and RSV. Furthermore, out of analysed genes, the MAP2K5 and NFKBIL1 were specifically and highly upregulated in SARS-CoV-2 infection in vivo or in vitro. In contrast, several genes including GPBAR1 and SC5DL were specifically downregulated in SARS-CoV-2 datasets. Additionally, we catalogued a set of genes that were conserved or differentially regulated across all the respiratory viruses. These finding provide foundational and genome-wide data to gauge the markers of respiratory viral infections individually and under co-infection.


Author(s):  
Maria Antonia De Francesco ◽  
Caterina Pollara ◽  
Franco Gargiulo ◽  
Mauro Giacomelli ◽  
Arnaldo Caruso

Different preventive public health measures were adopted globally to limit the spread of SARS-CoV-2, such as hand hygiene and the use of masks, travel restrictions, social distance actions such as the closure of schools and workplaces, case and contact tracing, quarantine and lockdown. These measures, in particular physical distancing and the use of masks, might have contributed to containing the spread of other respiratory viruses that occurs principally by contact and droplet routes. The aim of this study was to evaluate the prevalence of different respiratory viruses (influenza viruses A and B, respiratory syncytial virus, parainfluenza viruses 1, 2, 3 and 4, rhinovirus, adenovirus, metapneumovirus and human coronaviruses) after one year of the pandemic. Furthermore, another aim was to evaluate the possible impact of these non-pharmaceutical measures on the circulation of seasonal respiratory viruses. This single center study was conducted between January 2017–February 2020 (pre-pandemic period) and March 2020–May 2021 (pandemic period). All adults >18 years with respiratory symptoms and tested for respiratory pathogens were included in the study. Nucleic acid detection of all respiratory viruses was performed by multiplex real time PCR. Our results show that the test positivity for influenza A and B, metapneumovirus, parainfluenza virus, respiratory syncytial virus and human coronaviruses decreased with statistical significance during the pandemic. Contrary to this, for adenovirus the decrease was not statistically significant. Conversely, a statistically significant increase was detected for rhinovirus. Coinfections between different respiratory viruses were observed during the pre-pandemic period, while the only coinfection detected during pandemic was between SARS-CoV-2 and rhinovirus. To understand how the preventive strategies against SARS-CoV-2 might alter the transmission dynamics and epidemic patterns of respiratory viruses is fundamental to guide future preventive recommendations.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Shirley Masse ◽  
Lisandru Capai ◽  
Alessandra Falchi

Background. The current study aims to describe the demographical and clinical characteristics of elderly nursing home (NH) residents with acute respiratory infections (ARIs) during four winter seasons (2013/2014–2016/2017), as well as the microbiological etiology of these infections. Methods. Seventeen NHs with at least one ARI resident in Corsica, France, were included. An ARI resident was defined as a resident developing a sudden onset of any constitutional symptoms in addition to any respiratory signs. Nasopharyngeal swabs from ARI residents were screened for the presence of 21 respiratory agents, including seasonal influenza viruses. Results. Of the 107 ARI residents enrolled from NHs, 61 (57%) were positive for at least one of the 21 respiratory pathogens. Forty-one (38.3%) of the 107 ARI residents had influenza: 38 (92%) were positive for influenza A (100% A(H3N2)) and three (8%) for influenza B/Victoria. Axillary fever (≥38°C) was significantly more common among patients infected with influenza A(H3N2). Conclusion. The circulation of seasonal respiratory viruses other than influenza A(H3N2) seems to be sporadic among elderly NH residents. Investigating the circulation of respiratory viruses in nonwinter seasons seems to be important in order to understand better the dynamic of their year-round circulation in NHs.


2020 ◽  
Vol 59 (1) ◽  
pp. e02142-20
Author(s):  
Ahmed Babiker ◽  
Heath L. Bradley ◽  
Victoria D. Stittleburg ◽  
Jessica M. Ingersoll ◽  
Autum Key ◽  
...  

ABSTRACTBroad testing for respiratory viruses among persons under investigation (PUIs) for SARS-CoV-2 has been performed inconsistently, limiting our understanding of alternative viral infections and coinfections in these patients. RNA metagenomic next-generation sequencing (mNGS) offers an agnostic tool for the detection of both SARS-CoV-2 and other RNA respiratory viruses in PUIs. Here, we used RNA mNGS to assess the frequencies of alternative viral infections in SARS-CoV-2 RT-PCR-negative PUIs (n = 30) and viral coinfections in SARS-CoV-2 RT-PCR-positive PUIs (n = 45). mNGS identified all viruses detected by routine clinical testing (influenza A [n = 3], human metapneumovirus [n = 2], and human coronavirus OC43 [n = 2], and human coronavirus HKU1 [n = 1]). mNGS also identified both coinfections (1, 2.2%) and alternative viral infections (4, 13.3%) that were not detected by routine clinical workup (respiratory syncytial virus [n = 3], human metapneumovirus [n = 1], and human coronavirus NL63 [n = 1]). Among SARS-CoV-2 RT-PCR-positive PUIs, lower cycle threshold (CT) values correlated with greater SARS-CoV-2 read recovery by mNGS (R2, 0.65; P < 0.001). Our results suggest that current broad-spectrum molecular testing algorithms identify most respiratory viral infections among SARS-CoV-2 PUIs, when available and implemented consistently.


2011 ◽  
Vol 140 (9) ◽  
pp. 1551-1556 ◽  
Author(s):  
H. E. TANNER ◽  
M. D. CURRAN ◽  
E. H. BOXALL ◽  
H. OSMAN

SUMMARYIn spring 2009 a new strain of influenza A(H1N1) emerged and caused a worldwide pandemic. This study utilized a large collection of respiratory specimens from suspected cases of influenza A(H1N1) in the UK West Midlands during the pandemic in order to investigate which other respiratory viruses were circulating and whether they played any role in the increased hospitalization rates seen during that period. Study specimens were selected from community and hospitalized patients positive and negative for influenza A(H1N1) and tested by PCR for other respiratory viruses. A number of infections diagnosed as influenza during the summer influenza outbreak were found to be due to other virus infections (most commonly rhinovirus). No statistically significant difference was found between the rates of respiratory virus co-infection with H1N1 in patients from community or hospital locations suggesting underlying factors were likely to be more significant than viral co-infections in determining severity of influenza A(H1N1) disease.


Author(s):  
Agnes S Montgomery ◽  
Michael B Lustik ◽  
Milissa U Jones ◽  
Timothy S Horseman

Abstract Five-year retrospective analysis of respiratory viruses in children less than 18 years old at Tripler Army Medical Center and outlying clinics in Oahu. Respiratory syncytial virus and influenza A showed pronounced seasonality with peaks from September to December and December to March, respectively. Results provide a better understanding of the timing of viral preventive strategies in Oahu.


1991 ◽  
Vol 33 (4) ◽  
pp. 287-296 ◽  
Author(s):  
Jussara P. Nascimento ◽  
Marilda M. Siqueira ◽  
Frits Sutmoller ◽  
Murilo M. Krawczuk ◽  
Vivian de Farias ◽  
...  

The occurrence of different viruses in nasopharyngeal secretions from children less than 5 years old with acute respiratory infections (ARI) was investigated over a period of 4 years (1982-1985) in Rio de Janeiro. Of the viruses known to be associated with ARI, all but influenza C and parainfluenza types 1, 2 and 4 were found. Viruses were found more frequently in children attending emergency or pediatric wards than in outpatients. This was clearly related to the high incidence of respiratory syncytial virus (RSV) in the more severe cases of ARI. RSV positive specimens appeared mainly during the fall, over four consecutive years, showing a clear seasonal ocurrence of this virus. Emergency wards provide the best source of data for RSV surveillance, showing sharp increase in the number of positive cases coinciding with increased incidence of ARI cases. Adenovirus were the second most frequent viruses isolated and among these serotypes 1,2 and 7 were predominant. Influenza virus and parainfluenza virus type 3 were next in frequency. Influenza A virus were isolated with equal frequency in outpatient departments, emergency and pediatric wards. Influenza B was more frequent among outpatients. Parainfluenza type 3 caused outbreaks in the shanty town population annually during the late winter or spring and were isolated mainly from outpatients. Herpesvirus, enterovi-rus and rhinovirus were found less frequently. Other viruses than RSV and parainfluenza type 3 did not show a clear seasonal incidence.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Neli Korsun ◽  
Svetla Angelova ◽  
Ivelina Trifonova ◽  
Silvia Voleva ◽  
Iliana Grigorova ◽  
...  

Нuman bocaviruses (hBoVs) are often associated with acute respiratory infections (ARIs). Information on the distribution and molecular epidemiology of hBoVs in Bulgaria is currently limited. The objectives of this study were to investigate the prevalence and genetic characteristics of hBoVs detected in patients with ARIs in Bulgaria. From October 2016 to September 2019, nasopharyngeal/oropharyngeal swabs were prospectively collected from 1842 patients of all ages and tested for 12 common respiratory viruses using a real-time RT-PCR. Phylogenetic and amino acid analyses of the hBoV VP1/VP2 gene/protein were performed. HBoV was identified in 98 (5.3%) patients and was the 6th most prevalent virus after respiratory-syncytial virus (20.4%), influenza A(H1N1)pdm09 (11.1%), A(H3N2) (10.5%), rhinoviruses (9.9%), and adenoviruses (6.8%). Coinfections with other respiratory viruses were detected in 51% of the hBoV-positive patients. Significant differences in the prevalence of hBoVs were found during the different study periods and in patients of different age groups. The detection rate of hBoV was the highest in patients aged 0–4 years (6.9%). In this age group, hBoV was the only identified virus in 9.7%, 5.8%, and 1.1% of the children diagnosed with laryngotracheitis, bronchiolitis, and pneumonia, respectively. Among patients aged ≥5 years, hBoV was detected as a single agent in 2.2% of cases of pneumonia. Phylogenetic analysis showed that all Bulgarian hBoV strains belonged to the hBoV1 genotype. A few amino acid substitutions were identified compared to the St1 prototype strain. This first study amongst an all-age population in Bulgaria showed a significant rate of hBoV detection in some serious respiratory illnesses in early childhood, year-to-year changes in the hBoV prevalence, and low genetic variability in the circulating strains.


2021 ◽  
Author(s):  
Parsa Hodjat ◽  
Paul Christensen ◽  
Sishir Subedi ◽  
Randall James Olsen ◽  
David W Bernard ◽  
...  

Implementation of measures to limit the spread of the SARS-CoV-2 virus at the start of the COVID-19 pandemic resulted in a rapid decrease in all other respiratory pathogens. As COVID-19 containment measures were relaxed, the first non-COVID respiratory viruses to return to prepandemic levels were members of the rhinovirus/enterovirus, followed by the rapid return of seasonal coronaviruses, parainfluenza, and respiratory syncytial virus after the complete removal of COVID-19 precautions at the state level, including an end to mask mandates. Inasmuch as COVID-19 has dominated the landscape of respiratory infections since early 2020, it is important for clinicians to recognize the return of non-COVID respiratory pathogens may be rapid and significant when COVID-19 containment measures are removed.


Sign in / Sign up

Export Citation Format

Share Document