scholarly journals Effects of tillage systems on physical properties of a cohesive yellow argisol in the northern state of Espírito Santo, Brazil

2013 ◽  
Vol 37 (5) ◽  
pp. 1372-1382
Author(s):  
Valmir José Zuffo ◽  
Fabio Ribeiro Pires ◽  
Robson Bonomo ◽  
Edney Leandro da Vitória ◽  
Ademar Celin Filho ◽  
...  

Tillage systems are a key element of the technology of crop production, both with a view to crop yield and from the perspective of soil conservation and sustainability of the production system. The aim of this paper was to evaluate the effects of five tillage systems on the physical properties of a cohesive Yellow Argisol. The experiment was installed in the field on January 21, 2011 and lasted 260 days, in an area previously used as pasture with Brachiaria grass without liming or fertilization, but irrigated by a low pressure spray system. The treatments, in five replications and in a randomized block design, consisted of: 1) disk plow (twice) + disk harrow + ridge-furrow tillage (raising a ridge along the planting row), 135 days after transplanting (DP + RID); 2) disk plow (twice) + disk harrow (DP no RID); 3) subsoiler (SB); 4) disk plow (twice) + disk harrow + scarification with three shanks along the plant row (DP + SPR); and 5) disk plow (twice) + disk harrow + scarification with three shanks in the total area (DP + STA). In all tillage systems, furrows were mechanically opened for the papaya plants. After the treatments, the mechanical resistance to penetration was determined, followed by soil moisture, mean weight diameter (MWD), geometric mean diameter (GMD), bulk density (BD), macroporosity (Ma), microporosity (Mi), and number of fruits per plant. There were differences in penetration resistance (PR) between treatments. The subsoiler was more effective to decrease RP to a distance of 0.35 m from the plants, perpendicular to the plant row. The scarifier resulted in a lower PR than DP or SB, even at the depth of 0.40 m, and it was more effective at greater distances perpendicular to the plant. All tillage systems induced a PR between 2.0 and 3.0 MPa at the depth with the highest concentration of papaya tree roots (0-0.25 m), improving the physical conditions to this depth. There was no statistical difference among the treatments for BD, Ma, Mi, MWD, and GMD at a depth of 0.20 m. The disk plow changed the physical properties of the soil most intensely to a depth of 0.20 m. The use of scarification, reduced tillage with a forest subsoiler, or ridge-furrow tillage did not improve the physical properties in the rhizosphere. Reduced tillage with a forest subsoiler resulted in a lower number of fruits per plant than all other treatments, which did not differ from each other.

2012 ◽  
Vol 36 (1) ◽  
pp. 283-294 ◽  
Author(s):  
Carolina Fernandes ◽  
José Eduardo Corá ◽  
Adolfo Valente Marcelo

Sugarcane production should be integrated with crop diversification with a view to competitive and sustainable results in economic, social and environmental aspects. The purpose of this study was to assess the influence of different soil uses during the sugarcane fallow period on the chemical and physical properties of eutroferric Red Latosol - LVef (Oxisol) and Acric Latosol - LVw (Acric Oxisol), in Jaboticabal, São Paulo State, Brazil (21º14'05'' S, 48º17'09'' W, 600 m asl). A randomized block design was used with five replications and four treatments, consisting of different soil uses (crops) in the sugarcane fallow period: soybean only, soybean/fallow/soybean, soybean/millet/soybean, and soybean/sunn hemp/soybean. After two soybean crops, the LVef chemical properties remained at intermediate to high levels; while those of the LVw, classified as intermediate to high in the beginning, increased to high levels. Thus, the different soil uses during the sugarcane fallow period allowed the maintenance of LVef fertility levels and the improvement of those of the LVw. Two soybean crops increased macroporosity in the 0.0-0.1 m layer of the LVef; reduced soil aggregates in the 0.0-0.1 and 0.1-0.2 m layers of both soils, and reduced aggregate stability in these two layers of the LVw. Planting pearl millet or sunn hemp between the two soybean growing seasons promoted the formation of larger soil aggregates in the surface layer (0.0-0.1 m) of the LVw.


Author(s):  
Sanjeet Kumar ◽  
R. K. Sahu ◽  
R. K. Thakur ◽  
Bablu Yaduwanshi ◽  
N. G. Mitra

The present study was carried out during kharif season 2019-20 at the Research Farm, Department of Soil Science & Agricultural Chemistry, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur, Madhya Pradesh (INDIA), to assess the effect of microbial inoculants on plant attributes and nutrients uptake by soybean in Vertisols. The experiment was laid out under randomized block design (RBD) with three replications. The 15 treatments comprised of different beneficial microbial consortia in possible combinations applied as seed treatments. The crop was supplemented with recommended dose of fertilizers 20 N : 80 P2O5 : 20 K2O kg ha-1. Besides these, two control plots were maintained as fertilized un-inoculated control (FUI) and unfertilized un-inoculated control (UFUI). The findings revealed that the significant improvement were noticed by the application of consortia NPK+EM+PGPR in plant growth attributes of nodulation at 25, 45 & 65 DAS (71, 70 & 59% respectively), over control (9.5, 33.4 & 34.7 nodule plant-1) and its biomass, (62, 69 & 74% respectively),over the control  (0.58, 1.16 & 0.99 g plant-1),  plant height at 25, 45 & 65DAS were increased 61, 40, 41% respectively, over the control (16.20, 34.90 and 44.30 cm) and plant biomass, (48, 62 & 53%), over the control 1.67, 4.73 and 6.1 g plant-1. Similarly, nutrient uptake (seed & stover) were also increased at 25, 45 and 65 stages of crop growth, with 36.6, 34.8 & 51.3% in seed and 66.7, 98.2 & 67.2% in straw respectively over the control (98.5, 63.8, 5.2, and 7.4, 24.9 and 44.4 kg ha-1 respectively). Thus, it may be concluded that the consortium of NPK + EM + PGPR was superior for sustainable crop production and soil health.


2020 ◽  
Vol 18 (1) ◽  
pp. 51-60
Author(s):  
RU Zaman ◽  
MR Islam

Generally, lentil seeds are sown following the traditional farming practice with 3-4 numbers of ploughing combined with broadcasting method in lentil growing countries. This is time consuming and costly. The objective of this study was to evaluate the lentil performance as affected by different mechanical seeding system as well as seeding device. There were seven different treatments of which two tillage systems like i) broadcasting after4 times tillage (CT) and ii) broadcasting after tillage with two wheeler driven High Speed Rotary Tiller (HSRT), and five direct mechanical seeding systems like TT+BP =one tillage + bed planting seeding (BP+Pl), TBP =Direct bed planting seeding (BP), TPTOS =Two wheeler operated Seeder (PTOS), TST = Strip tillage seeding (ST) and TZ =Zero tillage seeding (Z). The experiment was carried out by a randomized complete block design (RCBD) with three replications. From the results it was revealed that yield was increased from0.56 % to 10.42% in mechanical seeding system than CT. The findings also demonstrated that BP increased yield of about 10.42% with 49.31% of lower fuel consumption which saved 48.1% time compared to CT. The HSRT gave numerically higher yield compare to ST than CT but lower than BP, BP+Pl and PTOS. Zero tillage seeding system gave the minimum seed yield compare to others which was 9.67% and 19% lower than that of CT and BP, respectively. In mechanical seeding systems, bed planting exhibited higher root volume and density compare to that of others, but lower to CT and HSRT. SAARC J. Agri., 18(1): 51-60 (2020)


2021 ◽  
Vol 8 (2) ◽  
pp. 1409-1415
Author(s):  
Ammal Abukari ◽  
Donkor Christian ◽  
Kwame Ochire-Boadu

 Heavy forest machinery used in skidding has the capacity to influence the physical properties of soils. These may possibly lead to an upsurge in soil disruption and compaction of the soil surface decreases forest soil fertilities. This study assesses the effects of skidding on some soil physical properties such as the soil bulk density and porosity in the Nkrankwanta off-forest reserve in Ghana. The treatments comprised of four traffic intensity levels (1, 5, 10, and 15 passes) of the Mercedes Benz skidder (MB) Trac 1800 and a slope of two levels (less than 20 % and greater than 20 %) in a completely randomized block design. In addition, porosity and soil bulk density were assessed at varied distances from the MB Trac 1800. Soil bulk density results showed increasing trends with traffic frequency. Soil bulk density measured in the undisturbed area was 0.64 g cm-3 and 0.56 g cm-3 at slopes of less than 20% and greater than 20%, respectively. On the skid trail, soil bulk density significantly increased with traffic frequency (p<0.05). However soil porosity declined. Soil porosity estimated in uninterrupted area was 59.10 % and 57.40 % at < 20% and > 20% slope, respectively. Soil porosity was significantly influenced via different skidder passes (p<0.05). The soil physical properties were not influenced by the steepness of the slope however acted together in the number of passes to influence soil porosity. The impacts of the skidder on soil physical properties were significantly apparent at distances of 2 m to each sideway of the skidding trail. In conclusion, distinct responsiveness ought to be considered throughout the operations of skidding to curtail unfriendly influences on soil physical properties in ground-base skidding.


2017 ◽  
Vol 44 (3) ◽  
pp. 228 ◽  
Author(s):  
Evriani Mareza ◽  
Zainal Ridho Djafar ◽  
Rujito Agus Suwignyo ◽  
Dan Andi Wijaya

<p>ABSTRACT<br /><br />The morphophysiology of ratoon is different from the main plant of rice and was influenced by location and cultivation.This research was intended to evaluate morphophysiology characters of rice ratoon planted by direct seeding system in tidal swamp at various stubble cutting height. The experiment was conducted in November 2013-April 2014 at tidal swamp overflow type B in Telang Sari Village, District of Tanjung Lago, Banyuasin, South Sumatra Province. The experiment used randomized block design with 5 replications. Treatment was stubble cutting height 10, 20, 30, 40 and 50 cm above the soil surface. Rice was planted at 4 m x 5 m plot, the distance between plot 1 m. Data were analyzed by test of variance and 5% HSD test. Morphophysiological characters of rice ratoon were influenced by stubble cutting height. Cutting height of 20-40 cm above soil surface increased the ratoon number of tillers per hill, leaf area per hill, dry weight per hill, percentage of empty grains per panicle, grain weight per hill and percentage ratoon/main crop production per hill. The higher stubble cutting, the lower the number of leaves per tiller, leaf area per tiller, carbohydrate content, and number of grains per panicle of ratoon, however it accelerated age of flowering and harvesting. <br /><br />Keywords: direct seeding system, ratoon system, rice growth and production, stubble cutting height<br /><br /></p>


AGRIFOR ◽  
2018 ◽  
Vol 17 (1) ◽  
pp. 123
Author(s):  
La Sarido

Long beans is one of the vegetable plants favored by the wider community, other than that the root nodules of this plant it capable to be a symbiosis with rhizobium bacteria to nitrogen fixationinto the soil so that the existence of nitrogen elements in the soil can be maintained, this is also accompanied by increased weed growth around the long beans so it will be affected the growth and yield of long beans crops.Research aimed to determine effect which caused by the existence of weeds on productivity of long beans (Vigna sinensis L.). Research was conducted on June 2016, North Sangatta Subs-district. The experiment was set up as a non factorial in a complete randomized block design which consists 5 blocks and 5 treatments, (P1) 100% weed existence, (P2) 75% weed existence, (P3) 50% weed existence (P4) 25% weed existenceand (P5) 0% weed existence. The Obtained results were analyzed by analysis of variance. The results showed that there was non significant on plant aged parameters when flowering 80%, plant aged at the time of first harvest and crop production, while the weight of fruit per plant was significantly. The best yielded when plant aged of 80% flowering on treatments of 100% weed existence and 25% weed existence i.e. 36,00 days;plant aged on the fastest harvest resulted ontreatments of 75, 25 and 0% weed existencei.e. respectively on 47and 20 days. Long beans has the the heaviest fruits were produced on the treatment of 0% weed existence i.e. 0,528 kg. While the heaviest production were produced on the treatment of 0%weed existence i.e.4,586 tonsha-1. Weeds that dominate on the planting area of long bean wereCyperus rotundus with the summed dominance ratio (SDR) 32,86%, there is decrease of production as 2,246% from total production if weed control is not done it.


2018 ◽  
Vol 48 (3) ◽  
pp. 316-322 ◽  
Author(s):  
Flávia Levinski-Huf ◽  
Vilson Antonio Klein

ABSTRACT Soil management practices and uses, in the integrated crop-livestock-forestry (ICLF) production system, influence the soil properties in different ways. This study aimed to assess the organic matter content and physical properties of a Red Latosol (Oxisol), in the forestry and crop components of an ICLF system. A split-plot randomized block design was used, with six blocks containing two main plots (forestry and crop) and eight split plots (sampled soil layers), totaling 16 treatments and 96 samples. The following variables were analyzed: organic matter, soil density, relative density, pore size distribution, Atterberg limits and aggregate stability. The presence of the forestry component improves the mean weight and geometric mean diameters, as well as the aggregates stability index of the Red Latosol, at five years after the implementation of the system. The aggregates stability in water and the Atterberg limits are the soil physical properties that better express the changes in the soil, with the inclusion of the forestry component. Including this component in the production system, throughout the years (> 5 years), improves the soil properties.


Jurnal Solum ◽  
2010 ◽  
Vol 7 (2) ◽  
pp. 118
Author(s):  
Aprisal Aprisal

A research about utilization of cylindrica biomass as an OM source was conducted to improve physical properties and to reduce soil erosion of degraded land and. The area of degraded land is quite large and the cylindrical biomass as a soil ameliorant is enough amount to use. The research was aimed to evaluate the effect of cylindrical biomass to improve properties and to reduce erosion of degraded Ultisol. Cylindrica biomass was treated as mulch as well as compost, sprayed with Round up, and removed from the land as farmers used to do. The field research was designed in Randomized Block Design (RBD). The result showed that cylindrical biomass was able to improve soil physical properties (BD, TP, infiltration rate) and to reduce erosion lower than the tolerated one. Keywords: land reclamation, erosion, tolerated erosion


Author(s):  
Anand G. Patil ◽  
A.S. Halepyati ◽  
B.M. Chittapur

Background: The measure of energy flow in crop production system provides a good indicator of the production of technological aspects of crop production systems in agriculture. Sustainable agricultural management technologies should be studied in terms of increased productivity, profitability, energy saving and efficiency of agricultural inputs usage by using efficiency indices and sustainable indicators. Methods: A field experiment was conducted at Agriculture Research Station, Janawada, Bidar during kharif and rabi seasons for two consecutive years (2014-15 and 2015-16) to know the energy use for achieving target yield. The experiement was laid out in randomized block design with three replications. The treatments viz., The two genotypes of soybean (JS335 and DSB 21) and chickpea (JG 11 and GBM 2) were tested for target yield of 2.0 t ha-1, 2.5 t ha-1, 3.0 t ha-1, 3.5 t ha-1, farmers practice and RDF were tested in medium black soils in randomized block design with three replications. The soil testing was carried out to determine the quantity of major nutrient for different target yields. Result: The experimental results revealed that the significantly higher energy efficiency (5.28 MJ ha-1), net energy (1,71,039.00 MJ ha-1), energy productivity (0.40 kg MJ-1), energy intensity (1,71,039.00 MJ ha-1) in physical terms (13.29 MJ kg-1) and economic terms (3.68 MJ Rs.-1), crop profitability (723.53 Rs.ha-1 day-1), system profitability (417.05 Rs.ha-1day-1) and relative economic efficiency (2.75) and soybean equivalent yield (5683 kg ha-1) were noticed in JS 335/JG 11 + target yield 3.0 t ha-1 compared to rest of the treatments. Thus, it could be concluded that various efficiency indices also used as alternative indices for achieving target yield in cropping system.


Sign in / Sign up

Export Citation Format

Share Document