scholarly journals Effects of platelet-rich plasma gel on skin healing in surgical wound in horses

2009 ◽  
Vol 24 (4) ◽  
pp. 276-281 ◽  
Author(s):  
Rafael DeRossi ◽  
Anna Carolina Anciliero de Oliveira Coelho ◽  
Gisele Silveira de Mello ◽  
Fabrício Oliveira Frazílio ◽  
Cássia Rejane Brito Leal ◽  
...  

PURPOSE: To establish a low-cost method to prepare platelet-rich plasma (PRP) and evaluates the potential of platelet derived factors to enhance wound healing in the surgical wounds in equine. METHODS: To obtain a PRP gel, calcium gluconate and autologous thrombin were added to platelet-rich plasma. For the tests six saddle horses were used and two surgical incisions were made in each animal. Wounds were treated with PRP gel or untreated. Sequential wound biopsies collected at Treatment 1: at days 5 and 30 and Treatment 2: at days 15 and 45 post wounding permitted comparison of differentiation markers and wound repair. RESULTS: The optimal platelets enrichment over 4.0 time's baseline values was obtained using 300 g for 10 min on the first centrifugation and 640 g for 10 min on the second centrifugation. CONCLUSION: Wounds treated with PRP gel exhibit more rapid epithelial differentiation and enhanced organization of dermal collagen compared to controls in equine

2021 ◽  
Vol 33 (6) ◽  
pp. 219-221
Author(s):  
Laura Bolton

Activated platelets release a rich broth of growth factors involved in wound healing. One way to deliver activated platelets to wounds is in the form of platelet-rich plasma (PRP) harvested by centrifuging the patient’s venous blood after activating the platelets with collagen or calcium chloride and/or autologous thrombin, then delicately removing the supernatant, called platelet-poor plasma (PPP). Platelet-rich plasma is usually injected into the lesion and/or applied topically, then sealed in or over the wound using a moisture-retentive dressing. Platelet-rich plasma (often with PPP) has been applied at different times, depths, and frequencies to chronic and acute wounds using various PRP doses and vehicles to achieve widely differing results. Meta-analyses have reported that PRP improved healing rates of open diabetic foot ulcers and venous ulcers1,2 and may reduce pain and surgical site infection (SSI) incidence in open and closed acute surgical wounds. However, inconsistency in study methods and outcome measures limited consistency of pain and SSI results.1 No consistent effect on healing or deep SSI rates was reported as a result of adding 1 intraoperative dose of PRP in the surgical site before closing elective foot and ankle surgery incisions of 250 patients as compared with 250 similar patients receiving the same procedure without PRP.3 After decades of research, ideal parameters of PRP delivery and use on each type of wound remain unclear for improving SSI, acute wound pain, and healing outcomes. This installment of the Evidence Corner reviews 2 surgical studies that may provide clues about optimal PRP use. One triple-blind randomized clinical trial (RCT) focused on irrigation of freshly closed carpal ligament surgical incisions with PRP as compared with PPP.4 Another non-blind RCT explored the effect of injecting PRP into open pilonidal sinus excisions 4 days and 12 days after surgery.5


2020 ◽  
Vol 40 (6) ◽  
pp. 474-478
Author(s):  
Grazielle A.S. Aleixo ◽  
Maria C.O.C. Coelho ◽  
Telga L.A. Almeida ◽  
Márcia F. Pereira ◽  
Miriam N. Teixeira ◽  
...  

ABSTRACT: This work aimed to evaluate the effect of platelet-rich plasma (PRP) on advancement skin flaps in dogs regarding improvement of vascularization, with focus on increasing its viable area, since there are reports that it is a potential angiogenesis stimulator. The experimental group was composed of eight adult bitches, in which two advancement skin flaps were made in the ventral abdominal region. No product was applied in the control flap (CF), while PRP was used in the contralateral flap, called treated flap (TF). The areas were clinically evaluated every two days until the 7th postoperative day regarding skin color and presence of necrosis. At 10 days, both flaps were removed and submitted to histological examination and blood vessel morphometry. The vessels counted in each group were statistically analyzed by the F-test at 1% probability. Results showed no significant difference in macroscopic changes in the wound, or CF and TF vascularization, thus suggesting that PRP gel did not improve advancement skin flap angiogenesis in bitches under the experimental conditions in which this research was developed.


Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 28
Author(s):  
Anastasios I. Tsiotsias ◽  
Nikolaos D. Charisiou ◽  
Ioannis V. Yentekakis ◽  
Maria A. Goula

CO2 methanation has recently emerged as a process that targets the reduction in anthropogenic CO2 emissions, via the conversion of CO2 captured from point and mobile sources, as well as H2 produced from renewables into CH4. Ni, among the early transition metals, as well as Ru and Rh, among the noble metals, have been known to be among the most active methanation catalysts, with Ni being favoured due to its low cost and high natural abundance. However, insufficient low-temperature activity, low dispersion and reducibility, as well as nanoparticle sintering are some of the main drawbacks when using Ni-based catalysts. Such problems can be partly overcome via the introduction of a second transition metal (e.g., Fe, Co) or a noble metal (e.g., Ru, Rh, Pt, Pd and Re) in Ni-based catalysts. Through Ni-M alloy formation, or the intricate synergy between two adjacent metallic phases, new high-performing and low-cost methanation catalysts can be obtained. This review summarizes and critically discusses recent progress made in the field of bimetallic Ni-M (M = Fe, Co, Cu, Ru, Rh, Pt, Pd, Re)-based catalyst development for the CO2 methanation reaction.


2014 ◽  
Vol 1616 ◽  
Author(s):  
J. E. Flores Mena ◽  
R. Castillo Ojeda ◽  
J. Díaz Reyes

ABSTRACTThe massive crystal growth of single crystal semiconductors materials has been of fundamental importance for the actual electronic devices industry. As a consequence of this one, we can obtain easily a large variety of low cost devices almost as made ones of silicon. Nowadays, the III-V semiconductors compounds and their alloys have been proved to be very important because of their optical properties and applications. It is the case of the elements In, Ga, As, Sb, which can be utilized for the fabrication of radiation sensors. In this work we present the results obtained from the ingots grown by the Czochralski method, using a growth system made in home. These results include anisotropic chemical attacks in order to reveal the crystallographic orientation and the possible polycrystallinity. Isotropic chemical attacks were made to evaluate the etch pit density. Metallographic pictures of the chemical attacks are presented in this work. Among the results of these measurements, the best samples presented in this work showed mobilities of 62.000 cm2/V*s at room temperature and 99.000 cm2/V*s at liquid nitrogen temperature. Typical pit density was 10,000/cm2. The Raman spectra present two dominant peaks associated at Transversal Optical (TO)- and Longitudinal Optical (LO)-InSb, the first vibrational mode is dominant due to the crystalline direction of the ingots and second one is associated to high defects density.


Resources ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 63
Author(s):  
Khalil Ibrahim ◽  
Mohammad Moumani ◽  
Salsabeela Mohammad

A combined process is proposed for the utilization of local kaolin to produce alumina particles. The applied process is made in two stages: calcination at 700 °C with sodium chloride and leaching with sulfuric followed by hydrochloric acids. The optimal extraction efficiency can be obtained when the conditions are as follows: leaching temperature is at 140 °C, leaching time is 3 h 45 min and concentration of sulfuric acid is 40 wt.%. The results show that the purity of alumina reaches 79.28%, which is suitable for the production of aluminum metal. It is evident that this method of extraction of alumina from the kaolin ash is practical and feasible. The structural and morphological properties of the calcined microcrystalline powder was characterized by X-ray diffraction and scanning electron microscope (SEM).


1993 ◽  
Vol 12 (2) ◽  
pp. 154-154
Author(s):  
Stephen Tatman

Abstract. The preparation of microfossil specimens for study with the scanning electron microscope involves the transfer of material from slides to stubs. Specimens must then be oriented and mounted securely. To do this accurately the slide and stub should both be viewed through a stereomicroscope. However due to differences in shape and height, both surfaces are not usually in the plane of focus at the same time. Many micropalaeontologists routinely use small boxes or sample tube lids to hold the stub and refocus before finally mounting the specimens. The risk of dropping specimens is reduced by using a single carrier, securely holding both the slide and stub. The design illustrated below (fig.1) was developed from a prototype constructed from cardboard and plastic. The metal unit can easily be made in a workshop at a very low cost or cardboard versions made in the laboratory.The stage is based on the principle that both slide and stub should be held securely, close together and in the same plane of focus. The slide holders should be secure but not too tight otherwise the stub may be jarred as slides are changed. The number of slides which can be held on one unit may be varied. The presence of two holders has proved useful, any more could make the unit cumbersome. If the microscope to be used does not have a wide stage then it may prove more practical to have only one holder.The stub holders allow the stub to be clamped to . . .


2017 ◽  
Vol 31 (1) ◽  
pp. 16-27 ◽  
Author(s):  
Christopher Gomez ◽  
Kyoko Kataoka ◽  
Aditya Saputra ◽  
Patrick Wassmer ◽  
Atsushi Urabe ◽  
...  

Numerous progress has been made in the field of applied photogrammetry in the last decade, including the usage of close-range photogrammetry as a mean of conservation and record of outcrops. In the present contribution, we use the SfM-MVS method combined with a wavelet decomposition analysis of the surface, in order to relate it to morphological and surface roughness data. The results demonstrated that wavelet decomposition and RMS could provide a rapid insight on the location of coarser materials and individual outliers, while arithmetic surface roughness were more useful to detect units or layers that are similar on the outcrop. The method also emphasizes the fact that the automation of the process does not allows clear distinction between any artefact crack or surface change and that human supervision is still essential despite the original goal of automating the outcrop surface analysis.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1467
Author(s):  
Harry Dawson ◽  
Jinane Elias ◽  
Pascal Etienne ◽  
Sylvie Calas-Etienne

The integration of optical circuits with microfluidic lab-on-chip (LoC) devices has resulted in a new era of potential in terms of both sample manipulation and detection at the micro-scale. On-chip optical components increase both control and analytical capabilities while reducing reliance on expensive laboratory photonic equipment that has limited microfluidic development. Notably, in-situ LoC devices for bio-chemical applications such as diagnostics and environmental monitoring could provide great value as low-cost, portable and highly sensitive systems. Multiple challenges remain however due to the complexity involved with combining photonics with micro-fabricated systems. Here, we aim to highlight the progress that optical on-chip systems have made in recent years regarding the main LoC applications: (1) sample manipulation and (2) detection. At the same time, we aim to address the constraints that limit industrial scaling of this technology. Through evaluating various fabrication methods, material choices and novel approaches of optic and fluidic integration, we aim to illustrate how optic-enabled LoC approaches are providing new possibilities for both sample analysis and manipulation.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Angga Hermawan ◽  
Ni Luh Wulan Septiani ◽  
Ardiansyah Taufik ◽  
Brian Yuliarto ◽  
Suyatman ◽  
...  

AbstractMolybdenum-based materials have been intensively investigated for high-performance gas sensor applications. Particularly, molybdenum oxides and dichalcogenides nanostructures have been widely examined due to their tunable structural and physicochemical properties that meet sensor requirements. These materials have good durability, are naturally abundant, low cost, and have facile preparation, allowing scalable fabrication to fulfill the growing demand of susceptible sensor devices. Significant advances have been made in recent decades to design and fabricate various molybdenum oxides- and dichalcogenides-based sensing materials, though it is still challenging to achieve high performances. Therefore, many experimental and theoretical investigations have been devoted to exploring suitable approaches which can significantly enhance their gas sensing properties. This review comprehensively examines recent advanced strategies to improve the nanostructured molybdenum-based material performance for detecting harmful pollutants, dangerous gases, or even exhaled breath monitoring. The summary and future challenges to advance their gas sensing performances will also be presented.


Sign in / Sign up

Export Citation Format

Share Document