scholarly journals Field comparison between selection methods at the maize seedling stage in relation to aluminum tolerance

2002 ◽  
Vol 59 (2) ◽  
pp. 397-401 ◽  
Author(s):  
Carlos Daniel Giaveno ◽  
José Branco de Miranda Filho

Selection and breeding for aluminum tolerance is a useful approach to increase maize (Zea mays L.) grain yield in acid soils. The objective of this work was the comparison between two screening approaches for the development of Al tolerant maize populations. One cycle of divergent selection for aluminum tolerance, using both nutrient solution and pots with acid soil, were completed in the maize population SIKALQ. The four sub-populations selected through both selection procedures were compared with the original population and checks in field trials repeated over locations. Eight environments stratified into four groups varying from non acid to high aluminum saturation were used. Three variables were analyzed for comparisons of methodologies: grain yield, plant height and days to male flowering. The populations performed similarly in the high productivity locations and the differences between tolerant and sensitive ones were more evident for increasing levels of toxic aluminum. In spite of little differences, selection in pots with acid soil was more efficient than nutrient solution in changing the genetic structure of the population toward more tolerant and sensitive levels.

2002 ◽  
Vol 59 (4) ◽  
pp. 807-810 ◽  
Author(s):  
Carlos Daniel Giaveno ◽  
José Branco de Miranda Filho

Genetic improvement is a useful approach to increase aluminum tolerance in maize. This experiment was carried out to compare two screening techniques under greenhouse conditions and estimate the association between the results obtained for both bioassays with grain yield. Nutrient solution (NS) and pots with acid soil (AS) were utilized as screening methodologies to perform one cycle of divergent selection for aluminum tolerance in the tropical maize population SIKALQ. The four sub-populations obtained by both approaches were compared with the original and checks in a greenhouse and in multilocation field trials. Evaluation under the conditions of NS and AS showed that the populations with the best performances were those selected for aluminum tolerance under the same condition of evaluation. The variables measured in greenhouse showed good correlation and the most closely related were fresh root weight (FRW) and dry rot weight (DRW) (0.79). All of these variables showed low correlation with yield in non acid conditions (< 0.30). The correlation was more important (~ 0.50) as soil aluminum saturation increased. The best correlation was observed for visual scoring (VS) (0.68), FRW (0.47) and net root growth (NRG) (0.52).


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Ali Maru ◽  
Osumanu Ahmed Haruna ◽  
Walter Charles Primus

The excessive use of nitrogen (N) fertilizers in sustaining high rice yields due to N dynamics in tropical acid soils not only is economically unsustainable but also causes environmental pollution. The objective of this study was to coapply biochar and urea to improve soil chemical properties and productivity of rice. Biochar (5 t ha−1) and different rates of urea (100%, 75%, 50%, 25%, and 0% of recommended N application) were evaluated in both pot and field trials. Selected soil chemical properties, rice plants growth variables, nutrient use efficiency, and yield were determined using standard procedures. Coapplication of biochar with 100% and 75% urea recommendation rates significantly increased nutrients availability (especially P and K) and their use efficiency in both pot and field trials. These treatments also significantly increased rice growth variables and grain yield. Coapplication of biochar and urea application at 75% of the recommended rate can be used to improve soil chemical properties and productivity and reduce urea use by 25%.


2010 ◽  
Vol 58 (4) ◽  
pp. 385-393 ◽  
Author(s):  
M. Rastija ◽  
V. Kovacevic ◽  
D. Rastija ◽  
D. Simic

Drought and soil acidity are two major abiotic stress factors limiting maize production worldwide, generating imbalances in the manganese (Mn) and zinc (Zn) status in plants. This study was conducted to determine the effects of drought stress on the Mn and Zn status in maize genotypes grown on acid and non-acid soils and how the Mn and Zn status affects the changes in grain yield caused by drought stress and soil acidity. Seventeen genotypes were grown at two locations differing in soil acidity in Eastern Croatia in 2003 and 2004. Positive values of an aridity index indicated drought stress in 2003. The genotypes had much higher Mn and Zn concentrations on acid soil than on nonacid soil: more than twice as high in both seasons for Zn and about 6 and 9 times higher in normal and in dry seasons, respectively, for Mn. This demonstrates that drought combined with soil acidity led to the excessive accumulation of Mn in maize plants. However, variation was observed between the maize genotypes for the Mn accumulation on soils differing in acidity when drought occurred. Some genotypes accumulated Mn on acid soil irrespective of drought. The Mn and Zn status had no discernible effect on the changes in grain yield caused by drought stress and/or soil acidity.


2002 ◽  
Vol 37 (8) ◽  
pp. 1099-1103 ◽  
Author(s):  
Euclydes Minella ◽  
Mark Earl Sorrells

Aluminum (Al) toxicity is a major factor limiting barley growth in acid soils, and genotypes with adequate level of tolerance are needed for improving barley adaptation in Brazil. To study the inheritance of Al tolerance in Brazilian barleys, cultivars Antarctica 1, BR 1 and FM 404 were crossed to sensitive Kearney and PFC 8026, and intercrossed. Parental, F1, F2 and F6 generations were grown in nutrient solution containing 0.03, 0.05 and 0.07 mM of Al and classified for tolerance by the root tip hematoxylin staining assay. Tolerant by sensitive F2 progenies segregated three tolerant to one sensitive, fitting the 3:1 ratio expected for a single gene. The F6 populations segregated one tolerant to one sensitive also fitting a monogenic ratio. The F2 seedlings from crosses among tolerant genotypes scored the same as the parents. Since the population size used would allow detection of recombination as low as 7%, the complete absence of Al sensitive recombinants suggests that tolerance in these cultivars is most probably, controlled by the same gene. Thus, the potential for improving Al tolerance through recombination of these genotypes is very low and different gene sources should be evaluated.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7739 ◽  
Author(s):  
Akira Iguchi ◽  
Kazutsuka Sanmiya ◽  
Kenta Watanabe

To understand how tropical plants have adapted to acid soils, we analyzed the transcriptome of seedlings of Psychotria rubra, a typical species found on acid soils. Using RNA-seq, we identified 22,798 genes, including several encoding proteins of the Al3+-activated malate transporter (ALMT) and multidrug and toxic compound extrusion (MATE) families. Molecular phylogenetic analysis of ALMTs and MATEs revealed the grouping of those from P. rubra, which may be useful to select targets for elucidating the molecular basis of P. rubra adaptation to acid soils in the future. The transcriptome datasets obtained in this study would help us to further understand the physiological and ecological aspects of soil adaptation of Psychotria species.


1990 ◽  
Vol 30 (5) ◽  
pp. 629 ◽  
Author(s):  
D Lemerle ◽  
AR Leys ◽  
CR Kidd ◽  
BR Cullis

The effects of soil pH and seasonal conditions on the responses of barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.) to chlorsulfuron were investigated at 3 sites in southern New South Wales in 1986, 1987 and 1988. The sites varied in soil pH (4.3-6.2) and annual rainfall (360-560 mm). In addition to the variation in soil pH between sites, 2 surface pH levels were obtained at each site by the addition of lime. The effect of post-emergence applications of 7.5, 15.0, 22.5, 30.0 and 37.5 g a.i./ha chlorsulfuron on the yield of weed-free barley and wheat varied with season, site and the addition of lime. The yield reduction was greatest in 1986, and the extent of the reduction was always greater in barley than wheat. In 1986, a recommended rate of chlorsulfuron (15 g a.i./ha) significantly (P<0.05) reduced the grain yield of barley at all sites by up to 18% and of wheat by up to 13%. Therefore, the reduced tolerance of barley and wheat to chlorsulfuron in some seasons was not restricted to the acid soils. Significant lime x chlorsulfuron interactions occurred with barley in 3 of the 9 trials, but the interactions were not consistent. At Ariah Park in 1986, grain yield reductions were greatest in unamended soils, while at both Ariah Park and Goolgowi in 1987, grain yield reductions were greatest with the limed plots. There were no significant interactions for wheat. In pot trials the effect of chlorsulfuron on the shoot dry weight of barley varied with soil type. However, there was no direct relationship between soil pH and dry weight reduction. When the pH of an acid soil was amended by liming to give soils with pH of 4.1-7.3, there was a trend to more damage at pH values of 5-6. With 4 soils of different pH and texture, there was less damage in the barley grown in soils of pH 7.3 and 7.4 than in soils of pH 4.1 and 6.0. While these results suggest that soil pH affects the tolerance of barley to chlorsulfuron, it is likely that soil pH is of less importance than other edaphic or climatic factors.


2016 ◽  
Vol 5 ◽  
pp. 96
Author(s):  
H. Ceballos ◽  
S. Pandey ◽  
E. B. Knapp ◽  
J. V. Duque

Currently, five tropical maize populations from CIMMYT are being bred for tolerance to acid soils through a full-sib recurrent selection scheme. Three cycles of selection from each population were evaluated in a split-plot design, with a varied number of replications under five environments (with normal soils, and the remaining four with varying degrees of soil stress). The observed genetic gains from these populations were highly significant: 4.72 % per cycle at all environments, 4.90% per cycle in acid soil environments (LSA), and 4.21 % per cycle for the normal soil location (LNA). The results suggest adequate genetic variability and high heritability for tolerance to soil acidity. In comparative trials, these populations yielded an average of 2.29 and 6.25 t/ha in the three LSA and two LNA environments, respectively. Under the same environments, the controls used (Tuxpeño, Pool 26 and Suwan-1) yielded an average of 1.28 and 5.56 t/ha.


Genetika ◽  
2009 ◽  
Vol 41 (2) ◽  
pp. 189-198
Author(s):  
Slavisa Stojkovic ◽  
Nebojsa Deletic ◽  
Milan Biberdzic ◽  
Miroljub Aksic ◽  
Dragoljub Bekovic

This paper deals with the investigation of S1 and HS progenies obtained from an F3 maize population. Those two progeny groups were created in 2004, and field trials were carried out in the period 2005-2006 at three locations near Aleksinac, Leskovac, and Krusevac, in RCB design. After genotypic correlation coefficients were calculated, they were used to calculate path coefficients and multiple determination coefficients. Analysis of path coefficients showed significant direct effects of the all studied traits in both S1 and HS progeny types. In S1 progenies indirect effects were significant for the all paths, except for percent of stalk and root lodged plants through 1000 grain mass, 1000 grain mass through percent of stalk and root lodged plants, and for 1000 grain mass through number of grain rows. The strongest direct effect on grain yield in HS progenies was shown by percent of stalk and root lodged plants (0.68**), while number of grains per row gave the strongest negative direct effect on grain yield (-0.97**). Multiple determination coefficients were significant for the most of independent variables' combinations in both progeny types. Numerous combinations composed of just few traits showed joint effects almost equal to the one showed by all seven independent variables.


2001 ◽  
Vol 36 (1) ◽  
pp. 61-70 ◽  
Author(s):  
Augusto Tulmann Neto ◽  
Marcelo Correa Alves ◽  
Carlos Eduardo de Oliveira Camargo ◽  
Jairo Lopes de Castro ◽  
Wilson Penteado Ferreira Filho

Seed from the sensitive wheat (Triticum aestivumL.) cultivar Anahuac was treated to gamma-ray irradiation and eleven Al3+ tolerant mutants selected. The objective was to compare these mutants to the original Anahuac and to the tolerant wheat cultivars IAC-24 and IAC-60 from 1994 to 1996 in acid (Capão Bonito) and limed (Monte Alegre do Sul) soil field trials, in the State of São Paulo, Brazil. Grain yield and agronomic characteristics were analyzed. All the mutant lines yielded higher than the sensitive Anahuac cultivar in the acid soils of Capão Bonito. Under limed soil conditions, 10 mutants had a similar yield to the original sensitive cultivar and one a lower yield. The majority of the mutants were similar in yield to the tolerant cultivars IAC-24 and IAC-60 under both conditions. Some of the mutants showed altered agronomic characteristics, but these alterations did not generally influence the grain yield. The results indicated that tolerant lines with good characteristics may be obtained from a susceptible cultivar by mutation induction, thus allowing cropping under conditions where Al3 + is a limiting factor.


2015 ◽  
Vol 4 (2) ◽  
pp. 21 ◽  
Author(s):  
P. O. Kisinyo ◽  
P. A. Opala ◽  
V. Palapala ◽  
S. O. Gudu ◽  
C. O. Othieno ◽  
...  

<p>High cost of inorganic fertilizers and lime has precluded their use by smallholder farmers to remedy the problem of soil acidity and infertility in Kenya. To address the problem, we tested a precision technique referred to as micro-dosing, which involves application of small, affordable quantities of inorganic inputs on an acid soil in Busia County, Kenya. Experimental treatments were N-fertilizer (0 and 37.5 kg N ha<sup>-1</sup>), P-fertilizer (0 and 13 kg P ha<sup>-1</sup>) and lime (0, 0.77 and 1.55 tons lime ha<sup>-1</sup>). 37.5 kg N and 13 kg P ha<sup>-1 </sup>are 50% of the recommended fertilizer rates for maize production in Kenya while 0.77 and 1.55 tons lime ha<sup>-1</sup> are 25 and 50% of the actual requirement. Soil chemical changes, maize grain yield and nutrient recovery were determined. Lime and P-fertilizer significantly affected only the top-soil pH, Ca, Mg and available P, while the effects of N-fertilizer were evident on both top- and sub-soil N likely due to its faster mobility than P and lime. Grain P-fertilizer recovery efficiencies were 14 and 16-27% due to 13 kg P and 13 kg P + 0.77-1.55 tons lime ha<sup>-1</sup>, respectively. N-fertilizer recovery efficiencies were 37 and 42-45% due to 37.5 kg N and 37.5 kg N + 0.77-1.55 tons lime ha<sup>-1</sup>, respectively. Fertilizers applied to supply 37.5 kg N, 13 kg P and 0.77-1.55 tons lime ha<sup>-1 </sup>increased grain yield above the control by 134, 39 and 12-22%, respectively, therefore micro-dosing of these inputs can increase maize production on Kenyan acid soils.</p>


Sign in / Sign up

Export Citation Format

Share Document