scholarly journals Micro-Dosing of Lime, Phosphorus and Nitrogen Fertilizers Effect on Maize Performance on an Acid Soil in Kenya

2015 ◽  
Vol 4 (2) ◽  
pp. 21 ◽  
Author(s):  
P. O. Kisinyo ◽  
P. A. Opala ◽  
V. Palapala ◽  
S. O. Gudu ◽  
C. O. Othieno ◽  
...  

<p>High cost of inorganic fertilizers and lime has precluded their use by smallholder farmers to remedy the problem of soil acidity and infertility in Kenya. To address the problem, we tested a precision technique referred to as micro-dosing, which involves application of small, affordable quantities of inorganic inputs on an acid soil in Busia County, Kenya. Experimental treatments were N-fertilizer (0 and 37.5 kg N ha<sup>-1</sup>), P-fertilizer (0 and 13 kg P ha<sup>-1</sup>) and lime (0, 0.77 and 1.55 tons lime ha<sup>-1</sup>). 37.5 kg N and 13 kg P ha<sup>-1 </sup>are 50% of the recommended fertilizer rates for maize production in Kenya while 0.77 and 1.55 tons lime ha<sup>-1</sup> are 25 and 50% of the actual requirement. Soil chemical changes, maize grain yield and nutrient recovery were determined. Lime and P-fertilizer significantly affected only the top-soil pH, Ca, Mg and available P, while the effects of N-fertilizer were evident on both top- and sub-soil N likely due to its faster mobility than P and lime. Grain P-fertilizer recovery efficiencies were 14 and 16-27% due to 13 kg P and 13 kg P + 0.77-1.55 tons lime ha<sup>-1</sup>, respectively. N-fertilizer recovery efficiencies were 37 and 42-45% due to 37.5 kg N and 37.5 kg N + 0.77-1.55 tons lime ha<sup>-1</sup>, respectively. Fertilizers applied to supply 37.5 kg N, 13 kg P and 0.77-1.55 tons lime ha<sup>-1 </sup>increased grain yield above the control by 134, 39 and 12-22%, respectively, therefore micro-dosing of these inputs can increase maize production on Kenyan acid soils.</p>

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ke Xu ◽  
Qiang Chai ◽  
Falong Hu ◽  
Zhilong Fan ◽  
Wen Yin

AbstractIntercropping increases the grain yield to feed the ever-growing population in the world by cultivating two crop species on the same area of land. It has been proven that N-fertilizer postponed topdressing can boost the productivity of cereal/legume intercropping. However, whether the application of this technology to cereal/cereal intercropping can still increase grain yield is unclear. A field experiment was conducted from 2018 to 2020 in the arid region of northwestern China to investigate the accumulation and distribution of dry matter and yield performance of wheat/maize intercropping in response to N-fertilizer postponed topdressing application. There were three N application treatments (referred as N1, N2, N3) for maize and the total amount were all 360 kg N ha−1. N fertilizer were applied at four time, i.e. prior to sowing, at jointing stage, at pre-tasseling stage, and at 15 days post-silking stage, respectively. The N3 treatment was traditionally used for maize production and allocations subjected to these four stages were 2:3:4:1. The N1 and N2 were postponed topdressing treatments which allocations were 2:1:4:3 and 2:2:4:2, respectively. The results showed that the postponed topdressing N fertilizer treatments boosted the maximum average crop growth rate (CGR) of wheat/maize intercropping. The N1 and N2 treatments increased the average maximum CGR by 32.9% and 16.4% during the co-growth period, respectively, and the second average maximum CGR was increased by 29.8% and 12.6% during the maize recovery growth stage, respectively, compared with the N3 treatment. The N1 treatment was superior to other treatments, since it increased the CGR of intercropped wheat by 44.7% during the co-growth period and accelerated the CGR of intercropped maize by 29.8% after the wheat had been harvested. This treatment also increased the biomass and grain yield of intercropping by 8.6% and 33.7%, respectively, compared with the current N management practice. This yield gain was primarily attributable to the higher total translocation of dry matter. The N1 treatment increased the transfer amount of intercropped wheat by 28.4% from leaf and by 51.6% from stem, as well as increased the intercropped maize by 49.0% of leaf, 36.6% of stem, and 103.6% of husk, compared to N3 treatment, respectively. Integrated the N fertilizer postponed topdressing to the wheat/maize intercropping system have a promotion effect on increasing the translocation of dry matter to grain in vegetative organs. Therefore, the harvest index of intercropped wheat and maize with N1 was 5.9% and 5.3% greater than that of N3, respectively. This demonstrated that optimizing the management of N fertilizer can increase the grain yield from wheat/maize intercropping via the promotion of accumulation and translocation of dry matter.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Jacob T. Bushong ◽  
D. Brian Arnall ◽  
William R. Raun

Preplant irrigation can impact fertilizer management in winter wheat. The objective of this study was to evaluate the main and interactive effects of preplant irrigation, N fertilizer application timing, and different N, P, and K fertilizer treatments on grain yield and WUE. Several significant two-way interactions and main effects of all three factors evaluated were observed over four growing seasons for grain yield and WUE. These effects could be described by differences in rainfall and soil moisture content among years. Overall, grain yield and WUE were optimized, if irrigation or adequate soil moisture were available prior to planting. For rain-fed treatments, the timing of N fertilizer application was not as important and could be applied before planting or topdressed without much difference in yield. The application of P fertilizer proved to be beneficial on average years but was not needed in years where above average soil moisture was present. There was no added benefit to applying K fertilizer. In conclusion, N and P fertilizer management practices may need to be altered yearly based on changes in soil moisture from irrigation and/or rainfall.


2013 ◽  
Vol 50 (1) ◽  
pp. 128-143 ◽  
Author(s):  
P. O. KISINYO ◽  
C. O. OTHIENO ◽  
S. O. GUDU ◽  
J. R. OKALEBO ◽  
P. A. OPALA ◽  
...  

SUMMARYSoil acidity and phosphorus (P) deficiency are some of the major causes of low maize yields in Kenya. This study determined the immediate and residual effects of lime and P fertilizer on soil pH, exchangeable aluminium (Al), available P, maize grain yield, agronomic P use and P fertilizer recovery efficiencies on a western Kenya acid soil. The treatments were: P fertilizer (0, 26 and 52 kg P ha−1as triple super phosphate) and lime (0, 2, 4 and 6 tons lime ha−1) applied once at the beginning of the study. A burnt liming material with 92.5% calcium carbonate equivalent was used. Soil samples were analysed prior to and after treatment application. The site had low soil pH–H2O (4.9), available P (2.3 mg kg−1), total N (0.17%), high Al (2.0 cmol kg−1exchangeable Al and 29% Al saturation). Lime reduced soil pH and exchangeable Al, leading to increased soil available P. Lime at 2, 4 and 6 tons ha−1maintained soil pH ≥ 5.5 for 2, 3 and 4 years, respectively. The study observed that the recommended P fertilizer rate (26 kg P ha−1) for maize production in Kenya was inadequate to raise soil available P to the critical level (≥10 mg P kg−1soil bicarbonate extractable P) required for healthy maize growth. To maintain soil available P at the critical level where 52 kg P ha−1and combined 52 kg P ha−1+ 4 tons lime ha−1were applied, it would be necessary to reapply the same P fertilizer rate after every one and two cropping seasons, respectively. The 4-year mean grain yield increments were 0.17, 0.34, 0.50, 0.58 and 1.17 tons ha−1due to 2, 4, 6 tons lime ha−1, 26 kg P and 52 kg P ha−1, respectively. Both agronomic P use and P fertilizer recovery efficiencies increased with increasing rates of lime and decreased with increasing rates of P fertilizer. Therefore, combined applications of both lime and P fertilizer are important for enhancing maize production on P-deficient acid soils in western Kenya.


Agronomy ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 293 ◽  
Author(s):  
Jie Liu ◽  
Jumei Li ◽  
Yibing Ma ◽  
Yuehui Jia ◽  
Qiong Liang

Recovery efficiency of nitrogen fertilizers has always been an important issue, especially for N fertilizer recommendation rate in cropping systems. Based on the equilibrium of N in the soil–plant system, apparent accumulated N fertilizer recovery (NREac) was determined for long-term (15-years) experiments in wheat (Triticum aestivum L.) and maize (Zea mays L.) rotations at five field sites with various soils and climate characteristics in China. The result showed that the frequency of cropping and the content of soil clay affected NREac positively and negatively, respectively. In the absence of nutrient deficiencies and other soil constraints (from NPK (nitrogen, phosphorus and potassium) in S2-CP (site2-Changping) in Beijing, S3-ZZ (site3-Zhengzhou) in Henan province and S4-YL (site4-Yangling) in Shaanxi province), NREac had a narrow range from 70% to 78% with the highest average of 75% in wheat and maize cropping system. Meanwhile, the value 75% of NERac is a rational value proved by 3414 experiments. Additionally, the nitrate-N approach suggested that nitrate-N could be utilized by subsequent crops, the amount of which is calculated by the equation −1.23 × [(NO3−-N) − 87]. Furthermore, another simpler and feasible method was proposed to maintain basic soil fertility while achieving a rational grain yield and maintaining a safe environmental upper threshold of nitrate. The present study provided a suit of methods for N fertilizer recommendations for the optimization of N applications in wheat and maize cropping system in China.


2010 ◽  
Vol 58 (4) ◽  
pp. 385-393 ◽  
Author(s):  
M. Rastija ◽  
V. Kovacevic ◽  
D. Rastija ◽  
D. Simic

Drought and soil acidity are two major abiotic stress factors limiting maize production worldwide, generating imbalances in the manganese (Mn) and zinc (Zn) status in plants. This study was conducted to determine the effects of drought stress on the Mn and Zn status in maize genotypes grown on acid and non-acid soils and how the Mn and Zn status affects the changes in grain yield caused by drought stress and soil acidity. Seventeen genotypes were grown at two locations differing in soil acidity in Eastern Croatia in 2003 and 2004. Positive values of an aridity index indicated drought stress in 2003. The genotypes had much higher Mn and Zn concentrations on acid soil than on nonacid soil: more than twice as high in both seasons for Zn and about 6 and 9 times higher in normal and in dry seasons, respectively, for Mn. This demonstrates that drought combined with soil acidity led to the excessive accumulation of Mn in maize plants. However, variation was observed between the maize genotypes for the Mn accumulation on soils differing in acidity when drought occurred. Some genotypes accumulated Mn on acid soil irrespective of drought. The Mn and Zn status had no discernible effect on the changes in grain yield caused by drought stress and/or soil acidity.


2001 ◽  
Vol 81 (3) ◽  
pp. 373-383 ◽  
Author(s):  
G. P. Lafond ◽  
Y. T. Gan ◽  
A. M. Johnston ◽  
D. Domitruk ◽  
F. C. Stevenson ◽  
...  

The recent advances in no-till seeding technology are providing new N management options for crop production on the prairies. The objectives of this study were to evaluate the potential interaction between P and N fertilizer on winter wheat production in a one-pass seeding and fertilizing system and to determine the feasibility of side-banding all N requirements using urea or anhydrous ammonia at planting as compared with the current practice of broadcasting ammonium nitrate early in the spring. Three forms of N fertilizer (urea, anhydrous ammonia, ammonium nitrate), three rates of N (50, 75 and 100 kg ha–1) and three rates of P (0, 9 and 17 kg P ha–1) were investigated. Urea and anhydrous ammonia were applied during the seeding operation, whereas ammonium nitrate was broadcast the following spring. Applying P fertilizer to the side and below the seed at planting with rates > 9 kg Pha–1 increased grain yield in 3 out of 6 site-years when ammonium nitrate was broadcast early in the spring. The positive yield response to P corresponded to soil test levels of 24 kg P ha–1. With soil test levels greater than 34 kg P ha–1, grain yield response to P fertilizer was not observed. When urea was banded at planting, together with P fertilizer, the yield increases with the increased P rates was shown only in 1 out of 6 site-years. At 5 of th e 6 site-years, grain protein concentration was not affected by P fertilizer; while for 1 site-year, the high rate of P fertilization decreased grain protein concentration. Responses of total grain N and P yields to P fertilization were parallel to the corresponding responses of P fertilization to grain yield, and were rarely associated with N or P concentrations in the grain. Applying N fertilizer at rates of 50 to 100 kg N ha–1 increased winter wheat grain yields by 3 to 8% in 3 out of 6 site-years. The high N rates increased grain protein concentrations in all 6 site-years. Grain protein concentration was 6% greater with N fertilizer applied as ammonium nitrate in early spring than when banding urea or anhydrous ammonia at planting. More consistent improvements in grain yield and grain protein concentration were obtained when the N fertilizer was applied as ammonium nitrate in the spring. Further research is required to determine the benefits of applying some of the crop’s N fertilizer requirements at planting, to reduce the risks of N stresses when the spring application is delayed because of adverse weather or soil conditions. Key words: Ammonium nitrate, anhydrous ammonia, grain yield, nitrogen timing, phosphorus, protein, urea


2009 ◽  
Vol 74 (1) ◽  
pp. 93-102 ◽  
Author(s):  
Mirjana Kresovic ◽  
Miodrag Jakovljevic ◽  
Srdjan Blagojevic ◽  
Srboljub Maksimovic

Investigations were performed on soils of different acidity, ranging in the pH interval 4.65-5.80 (in water). Changes of the mineral nitrogen forms in the examined soils were studied by applying short-term incubation experiments performed under aerobic conditions, with a humidity of 30 % and a temperature of 20?C, both with and without the addition of 100 and 300 ppm NH4-N. The results of the incubation experiments showed that retarded nitrification was present in all the examined soils. Increased and toxic quantities of nitrites (35.7 ppm) were formed during the incubation, which remained in the soil solution for several days, and even weeks, in spite of favorable conditions of moisture, aeration and temperature for the development of the process of chemoautotrophic nitrification. Decelerated chemoautotrophic nitrification was the source of the occurrence of nitrite in the examined less acid soil (soil 1), while in soils of higher acidity (soils 2 and 3) after addition of 100 and 300 ppm NH4-N, nitrite occurred due to chemical denitrification (chemodenitrification). Nitrites formed in the process of chemodenitrification underwent spontaneous chemical oxidation resulting in nitrate formation (chemical nitrification). The content of mineral nitrogen (NH4 + NO3 + NO2-N) decreased during the incubation period, proving gaseous losses from the examined soils. Application of lower doses of nitrogen fertilizers could decrease nitrogen losses by denitrification as well as the occurrence of nitrite in toxic quantities in the investigated pseudogley soil.


2020 ◽  
Vol 10 (9) ◽  
pp. 3162
Author(s):  
Nur Aainaa Hasbullah ◽  
Osumanu Haruna Ahmed ◽  
Nik Muhamad Ab Majid

Soils of the tropics are highly weathered, acidic, and low in phosphorus (P) because of high contents of Al and Fe. Satisfactory P supply is essential to ensure optimum soil and crop productivity. Thus, there is a need for amending soils with zeolite to improve availability of P in acid soils as this mineral can fix Fe and Al instead of P. This study was undertaken to determine the transformations of P fertilizers in acid soils following application of Clinoptilolite zeolite (CZ) in laboratory (incubation) and pot trials. An acid soil was incubated with a recommended fertilization rate and a reduced amount of the existing recommended fertilization by 25% but substituting this reduction with an equivalent amount of CZ. Triple superphosphate (TSP), Egypt Rock phosphate (ERP), and Christmas Island Rock phosphate (CIRP) were used as P sources. Selected soil chemical properties, inorganic P fractions, available P, and total P of the native soil were determined before and after the laboratory and pot trials. Zea mays L. (test crop) plant dry matter production, P concentration, P uptake, and P use efficiency were also determined using standard procedures. Effects of the treatments with CZ compared to the recommended fertilization on P fixation were similar. In the laboratory study, the treatments with TSP showed lower dominance of Fe–P but more pronounced in Al–P, whereas for the RPs, Ca–P was dominant. In the pot study, Al–P, Ca–P, and Fe–P were rather pronounced in the treatments with TSP, ERP, and CIRP, respectively. There was a decrease in exchangeable Al and soil titratable acidity because of the ability of the CZ to increase soil pH. Although the availability of P was not significant with the inclusion of CZ in the incubation study, dry matter production, P concentration, P uptake, and P use efficiency in the pot trial were comparable with that of the existing/recommended fertilization, suggesting that the CZ is beneficial and could be used to reduce the P fertilizer requirement for Zea mays L. cultivation on acid soils. Regardless of type of P fertilizer, prevalence of the moderately labile P fractions (Al–P, Fe–P, and Ca–P) of the incubation and pot studies acted as slow-release P sources to contribute to long-term P release. Further studies on the potential of CZ to reduce fertilization and its effects on soil and crop productivity are essential. It is also important to determine the economic benefits of including CZ in Zea mays L. cultivation.


1990 ◽  
Vol 30 (5) ◽  
pp. 629 ◽  
Author(s):  
D Lemerle ◽  
AR Leys ◽  
CR Kidd ◽  
BR Cullis

The effects of soil pH and seasonal conditions on the responses of barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.) to chlorsulfuron were investigated at 3 sites in southern New South Wales in 1986, 1987 and 1988. The sites varied in soil pH (4.3-6.2) and annual rainfall (360-560 mm). In addition to the variation in soil pH between sites, 2 surface pH levels were obtained at each site by the addition of lime. The effect of post-emergence applications of 7.5, 15.0, 22.5, 30.0 and 37.5 g a.i./ha chlorsulfuron on the yield of weed-free barley and wheat varied with season, site and the addition of lime. The yield reduction was greatest in 1986, and the extent of the reduction was always greater in barley than wheat. In 1986, a recommended rate of chlorsulfuron (15 g a.i./ha) significantly (P<0.05) reduced the grain yield of barley at all sites by up to 18% and of wheat by up to 13%. Therefore, the reduced tolerance of barley and wheat to chlorsulfuron in some seasons was not restricted to the acid soils. Significant lime x chlorsulfuron interactions occurred with barley in 3 of the 9 trials, but the interactions were not consistent. At Ariah Park in 1986, grain yield reductions were greatest in unamended soils, while at both Ariah Park and Goolgowi in 1987, grain yield reductions were greatest with the limed plots. There were no significant interactions for wheat. In pot trials the effect of chlorsulfuron on the shoot dry weight of barley varied with soil type. However, there was no direct relationship between soil pH and dry weight reduction. When the pH of an acid soil was amended by liming to give soils with pH of 4.1-7.3, there was a trend to more damage at pH values of 5-6. With 4 soils of different pH and texture, there was less damage in the barley grown in soils of pH 7.3 and 7.4 than in soils of pH 4.1 and 6.0. While these results suggest that soil pH affects the tolerance of barley to chlorsulfuron, it is likely that soil pH is of less importance than other edaphic or climatic factors.


Sign in / Sign up

Export Citation Format

Share Document