scholarly journals Determining the deficit coefficient as a function of irrigation depth and distribution uniformity

2010 ◽  
Vol 14 (3) ◽  
pp. 253-260 ◽  
Author(s):  
Everardo C. Mantovani ◽  
Gregório G. Faccioli ◽  
Brauliro G. Leal ◽  
Luis C. Costa ◽  
Antônio A. Soares ◽  
...  

The present study aimed at the development of the water deficit coefficient as a function of the Christiansen uniformity coefficient and relationship between the applied water depth and that required by a given crop, taking into account that the water distribution by the sprinkler follows a normal distribution. Another objective was to compare the experimental results to those obtained through simulation with the Mantovani model. For this, the water deficit coefficients developed in this work were used, as well as the simplified coefficient that takes into account the water distribution by the sprinkler following a uniform distribution, and finally the development of the production functions for the bean crop by using the Mantovani model. The production values simulated by the model, using the normal deficit coefficient, were always less than those simulated with the uniform deficit coefficient for all uniformity levels and all values of the crop's maximum evapotranspiration fraction restored by other sources (p). Under the conditions that this study was carried out, the use of the water deficit coefficient based on the normal distribution model did not provide a better performance of the simulation model proposed by Mantovani.

Irriga ◽  
2009 ◽  
Vol 14 (4) ◽  
pp. 458-469 ◽  
Author(s):  
Everardo C. Mantovani ◽  
Gregório G. Faccioli ◽  
Brauliro Gonçalves Leal ◽  
Antonio Alves Soares ◽  
Luis Claudio Costa ◽  
...  

INFLUENCE OF THE WATER DISTRIBUTION UNIFORMITY AND IRRIGATION DEPTH ON THE YIELD OF IRRIGATED BEAN CROP  Everardo C. Mantovani1; Gregório G. Faccioli2; Brauliro Gonçalves Leal3;Antônio Alves Soares1; Luis Cláudio Costa1; Paulo Sérgio L. Freitas4 1Departamento de Engenharia Agrícola, Universidade Federal de Viçosa, MG [email protected]úcleo de Estudos e Pesquisas do Nordeste, Universidade Federal de Sergipe, São Cristovão, SE3Intec Consultoria e Assessoria Ltda, Viçosa, MG4Departamento de Agronomia, Universidade Estadual de Maringá, Maringá, PR  1 ABSCTRACT This study aimed to evaluate the influence of the water distribution uniformity and three irrigation depths on the production variables for the bean crop, using a conventional sprinkler irrigation system, during the winter season. The treatments consisted of three irrigation depths and two uniformity levels of water distribution represented by the Christiansen uniformity coefficient (CUC). In the treatments L1A and L1B a sufficient water depth was applied to raise the soil water content to field capacity. The distribution uniformities (CUCs) were higher and lower than 80%, respectively. In treatments L2A and L3A, and L2B and L3B, the applied water depths corresponded to 50% and 150% of that applied to the LIA treatment. Because of rainfall events until the sampling date, no significant differences at 5% probability were found among treatments, when the variables were: leaf number, leaf area and dry matter. The F test for the contrast among the treatments with high and low uniformity was significant at 5% probability, when using 50% replacement of the water depth required by the crop. Significant differences were observed at 5% probability for pod number per plant among the treatments, when using 150, 100 and 50% replacement of the water depth required by the crop KEYWORDS: irrigation uniformity, sprinkler irrigation, yield.  MANTOVANI, E. C.; FACCIOLI, G. G.; LEAL, B. G.; SOARES,A. A.; COSTA, L. C.; FREITAS, P. S. L. INFLUÊNCIA DA UNIFORMIDADE DE DISTRIBUIÇÃO DE ÁGUA E LÂMINA DE IRRIGAÇÃO NA PRODUTIVIDADE DO FEIJÃO  2 RESUMO O presente trabalho teve como objetivo avaliar a influência da uniformidade de distribuição de água e de três lâminas de irrigação nas variáveis de produção da cultura do feijão, utilizando um sistema de aspersão convencional, no período de inverno. Os tratamentos constaram de três lâminas de irrigação e dois níveis de uniformidade de distribuição de água, representados pelo coeficiente de uniformidade de Christiansen (CUC). Nos tratamentos L1A e L1B foi aplicada uma lâmina de água suficiente para elevar a umidade do solo à capacidade de campo, com uniformidade de distribuição (CUC) maior e menor que 80%, respectivamente. Nos tratamentos L2A e L3A, e L2B e L3B as lâminas aplicadas foram, respectivamente, 50% e 150% da lâmina aplicada no tratamento L1A. Não existiram diferenças significativas, a 5% de probabilidade, nos tratamentos para seguintes variáveis: número de folhas, área foliar e matéria seca, em razão das chuvas ocorridas até a data da amostragem. O teste F para o contraste entre os tratamentos de alta e baixa uniformidade com 50% de reposição da lâmina requerida pela cultura foi significativo a 5% de probabilidade. Observou-se diferenças significativas, a 5% de probabilidade entre os tratamentos com 150, 100 e 50% de reposição da lâmina requerida pela cultura, para o número de vagens por planta. UNITERMOS: Uniformidade de irrigação, irrigação por aspersão, produtividade.


Irriga ◽  
2016 ◽  
Vol 21 (4) ◽  
pp. 631-647 ◽  
Author(s):  
Jorge Tomoyoshi Tamagi ◽  
Miguel Angel Uribe Opazo ◽  
Jerry Adriani Johann ◽  
Marcio Antonio Vilas Boas

UNIFORMIDADE DE DISTRIBUIÇÃO DE ÁGUA DE IRRIGAÇÃO POR ASPERSORES COMPENSANTES E NÃO COMPENSANTES EM DIFERENTES ALTURAS  JORGE TOMOYOSHI TAMAGI1; MIGUEL ANGEL URIBE-OPAZO2; JERRY ADRIANI JOHANN2 E MARCIO ANTONIO VILAS BOAS2 1 Universidade Estadual do Oeste do Paraná - UNIOESTE, Doutorando em Engenharia Agrícola no Programa de Pós-Graduação em Engenharia Agrícola – PGEAGRI. Rua Universitária, 2069 – Jd. Universitário – Caixa Postal 711 – CEP 85819-110 – Cascavel – PR, e-mail: [email protected] UNIOESTE, campus de Cascavel – PR, professores e pesquisadores do PGEAGRI, e-mails: [email protected]; [email protected]; [email protected].  1 RESUMO Este trabalho tem como finalidade contribuir para o desenvolvimento de técnicas adequadas para avaliação de sistemas de irrigação por aspersão, considerando que a uniformidade de distribuição da água afeta diretamente a lâmina bruta de irrigação. O experimento foi conduzido na região Norte de Cascavel, Paraná, (24º 55’ 04” latitude Sul, 53º 28’ 31” longitude Oeste e altitude de 785 m). Foram utilizadas duas parcelas de 10 x 10 m, denominadas S1 e S2, modificando-se somente a altura dos aspersores de 1,5 m para 1,0 m, respectivamente. Em cada parcela foram instalados 100 coletores, 4 aspersores super 10 bocal azul, compensante e, após 32 ensaios, foram substituídos por 4 aspersores super 10 bocal azul, não compensante. Foram determinados os seguintes coeficientes: Uniformidade de Christiansen, Uniformidade de Distribuição e Uniformidade Estatístico. Foram realizados estudos de inferência estatística e criadas cartas de controle para a análise do controle estatístico do processo, além dos índices de capacidade de processo (Cp) e desempenho do processo (Cpk). Os resultados mostraram que o aspersor compensante apresentou melhor desempenho à altura de 1,5 m (C-1,5 m) e que, entre as alturas de 1,0 m e 1,5 m, as melhores uniformidades de distribuição de água ocorreram na altura de 1,5 m. Palavras-chave: inferência estatística; cartas de controle; capacidade de processo.  TAMAGI, J. T.; URIBE-OPAZO, M. A.; JOHANN J. A.; VILAS BOAS, M. A. IRRIGATION WATER DISTRIBUTION UNIFORMITY BY COMPENSATING AND NON-COMPENSATING SPRINKLERS AT DIFFERENT HEIGHTS  2 ABSTRACT The uniformity of water application is an important factor to be considered in the assessment of sprinkler irrigation systems, since it directly affects gross irrigation depth, This work is a contribution for the development of appropriate techniques for assessment of results to improve the system. This trial was conducted  in the Northern region of Cascavel-PR (24º 55' 04" S, 53º 28' 31" W). Two 10 x 10 m plots were used and described as S1 and S2, according to the heights’ change of sprinklers, from 1.5 to 1.0 m, respectively. There were 100 collectors in each plot, plus 4 Super 10-blue-nozzle pressure compensating sprinklers, and, after 32 essays, they were replaced by 4 Super 10-blue-nozzle non pressure compensating sprinklers. The following coefficients were determined: Christiansen uniformity coefficient (CUC), coefficient of uniformity of distribution (CUD) and statistical uniformity coefficient (SUC). Statistical inference studies were carried out and control charts were generated to analyze the statistical control of the process, as well as Cp and Cpk indices. The results showed the best performance with the pressure compensating sprinklers irrigation at 1.5 m high (C-1.5 m) and that among the 1.0 m and 1.5 m heights the best water distribution uniformity was with the 1.5 m height. Keywords: Statistical analysis; Control Charts; Process Capacity.


Author(s):  
JHONATAN PIAZENTIN ◽  
João Luis Zocoler ◽  
Camila Pires Cremasco ◽  
Alfredo Bonini Neto ◽  
Luís Roberto Almeida Gabriel Filho

Increasing water use efficiency in agricultural systems is critical as it results in economic and environmental cost reductions, especially in localized irrigation, which depends on a number of factors, especially the flow rate of the emitters and proper uniformity of water distribution, both with respect to direct with the pressure of the emitters For this evaluation the use of coefficients of water uniformity, it is essential to indicate the best wetness management. The experiment was carried out in the Irrigation laboratory, in a test stand, using Christiansen uniformity coefficient - CUC, distribution uniformity coefficient - CUD and statistical uniformity coefficient - CUE. In the irrigation line, four pressures on the drip emitter (5, 10, 15 and 20 mca) were applied. The pressure variations obtained did not reduce the efficiency of the uniformity of water distribution by the drip system, falling into high efficiency ranges for all evaluated coefficients, representing adequate wetting rates.


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 913 ◽  
Author(s):  
Lin Zhang ◽  
Boyang Fu ◽  
Naiwang Ren ◽  
Yu Huang

Crops are highly susceptible to drought in sloping land. Due to its good adaptability to complex terrain, sprinkler irrigation is one of the commonly used methods for sloping land. To improve water application uniformity for sprinkler irrigation on sloping land, an experiment was conducted on an artificial slope to determine the effects of pulsating versus constant pressure on sprinkler flow rate, radius of throw, water distribution pattern, and water application uniformity. Compared with sprinkler flow rate and water distribution uniformity at constant pressure, sprinkler flow rate was not reduced, but water distribution uniformity for a single sprinkler was improved due to the decreased uphill throw, downhill throw and the ratio of downhill throw to uphill throw at pulsating pressure. The Christiansen Uniformity Coefficient (CU) value of water distribution for a single sprinkler at pulsating pressure was about 10% higher than that of constant pressure. When water distribution of single sprinkler overlapped with rectangular arrangement, CU values for pulsating pressure were on average 4.06% higher than those for constant pressure with different sprinkler spacings. Thus, pulsating pressure is recommended for use in sprinkler irrigation on sloping land to improve water application uniformity.


Irriga ◽  
2018 ◽  
Vol 1 (2) ◽  
pp. 14-18
Author(s):  
Taiane de Almeida Pereira ◽  
Alexandre Reuber Almeida da Silva ◽  
Marcos Makeison Moreira de Sousa ◽  
Cristian De França Santos ◽  
Daniel Lima dos Santos

PRESSÕES DE SERVIÇOS E SEUS EFEITOS NO DESEMPENHO DE UM SISTEMA DE IRRIGAÇÃO POR GOTEJAMENTO     TAIANE DE ALMEIDA PEREIRA1; ALEXANDRE REUBER ALMEIDA DA SILVA2; MARCOS MAKEISON MOREIRA DE SOUSA3; CRISTIAN DE FRANÇA SANTOS1 E DANIEL LIMA DOS SANTOS1   1Graduandos em Tecnologia em Irrigação e Drenagem, Instituto Federal de Educação Ciência e Tecnologia do Ceará – campus Iguatu, Rodovia Iguatu/Várzea Alegre, Km 05 – Vila Cajazeiras – Iguatu-CE. CEP: 63.503-790; taianeirrigacao@gmail; [email protected]; [email protected]; 2Professores do Curso de Tecnologia em Irrigação e Drenagem, Instituto Federal de Educação Ciência e Tecnologia do Ceará – campus Iguatu, Rodovia Iguatu/Várzea Alegre, Km 05 – Vila Cajazeiras – Iguatu-CE. CEP: 63.503-790, [email protected]; 3Mestrando em Engenharia Agrícola, Departamento de Engenharia Agrícola, Universidade Federal do Ceará – campus do Pici, Centro de Ciências Agrárias – CCA/UFC, Bloco 804, Fortaleza CE, CEP: 60.455-760; [email protected].     1 RESUMO   O presente trabalho teve como objetivo analisar a uniformidade de distribuição de em um sistema de irrigação localizada, do tipo gotejamento operando em condições de campo sob diferentes pressões de serviços, por meio da determinação dos Coeficiente de Uniformidade de Christiansen (CUC), do Coeficiente de Uniformidade de Distribuição (CUD) e do Coeficiente de Uniformidade Estatística (Us). Em campo, foram utilizadas 4 linhas laterais escolhidas ao acaso e com o auxílio de proveta e cronômetro, foram aferidos os volumes de água em 4 gotejadores de parede delgada, em três repetição em um tempo de 60 segundos, observando as 3 diferentes pressões de serviço (5,1; 10,2 e 15,3 mca). A média dos valores encontrados para o Coeficiente de Uniformidade de Christiansen (CUC), Coeficiente de Uniformidade de Distribuição (CUD) e o Coeficiente de Uniformidade Estatística (Us) são considerados pela literatura especializada como excelentes.  Todavia, na pressão de serviço de 5,1 mca, a uniformidade de distribuição de água tende a ser comprometida. Infere-se, portanto, que o sistema de irrigação está bem dimensionado evitando assim danos financeiros, independente das pressões de serviços nas quais o mesmo esteja operando.   Palavras-Chave: uniformidade, microirrigação, alturas manométricas.     PEREIRA, T. DE A.; SILVA, A. R. A. DA; SOUSA, M. M. M. DE; SANTOS, C. DE F.; SANTOS, D. L. DOS SERVICE PRESSURES AND THEIR EFFECTS ON THE PERFORMANCE OF A DRIP IRRIGATION SYSTEM     2 ABSTRACT   The objective of this work was to analyze the distribution uniformity of a drip irrigation system located in field conditions under different service pressures, through the determination of the Coefficient of Uniformity of Christiansen (CUC), Coefficient of Distribution Uniformity (CUD) and Statistical Uniformity Coefficient (Us). In the field, 4 randomly selected lateral lines were used and with the aid of a beaker and stop watch, the water volumes were measured in 4 thin-walled drippers in three repetitions in a time of 60 seconds, observing the 3 different service pressures (5.1, 10.2 and 15.3 microns). The mean values found for the Christiansen Uniformity Coefficient (CUC), Uniform Distribution Coefficient (CUD) and the Statistical Uniformity Coefficient (Us) are considered by the specialized literature to be excellent. However, in the service pressure of 5.1 mca, the uniformity of water distribution tends to be compromised. It is inferred, therefore, that the irrigation system is well-sized working, thus avoiding financial damages, regardless of the pressures of services in which it is operating.   Keywords: uniformity, micro-irrigation, manometric heights.


2020 ◽  
Vol 12 (18) ◽  
pp. 7574
Author(s):  
Pan Tang ◽  
Chao Chen ◽  
Hong Li

The aim of this study is to improve the water distribution uniformity of a vertical impact sprinkler and explore the design method of the drive spoon blades. The width of straight blades (h1), the width of curved blades (h2) and number of blades (s) were chosen as the experiential variables. The suitable ranges of three variables for response surface method were determined initially by one-factor experimental design method, and 17 different drive spoons were designed according to response surface methodology. The results showed that in the one-factor experimental condition, the CU (Christiansen’s uniformity coefficient) values first increased and decreased slightly when h1 exceeded 3 mm with the increase of h1 within the variation range of the experimental factor. The CU values firstly increased and then decreased with the increase of h2. The CU values decreased rapidly when s was less than 3 or greater than 6. The relationship between CU values and h1, h2 and s was established using response surface methodology. The p-values for h1, h2 and s were 0.0359, 0.0092, 0.0212, and all of the selected factors were significant on CU. The order of parameters affecting CU were h2, h1 and s. The ideal parameters for the drive spoon blades were h1 = 6 mm, h2 = 4 mm, and s = 3. CU was greatly improved after the optimization of structure for the drive spoon blades, which increased to 87.96% from 73.12%. After optimization, the application rates within 1 to 5 m were improved and increased from 10% to 15% with an average of 10.7% under different operating pressures. The maximum application rates decreased from 9.3, 9.3, 9.4 and 8.4 mm·h−1 to 8.5, 8.4, 8.5 and 7.9 mm·h−1 with operating pressures of 300, 400, 500 and 600 kPa, respectively. The maximum application rates in the overlap area were decreased from 18, 16, 16 and 15 mm·h−1 to 16, 14, 14 and 12 mm·h−1 with operating pressures of 300, 400, 500 and 600 kPa, respectively.


2016 ◽  
Vol 47 (1) ◽  
pp. 18-24
Author(s):  
L.I. Vysochkina ◽  
M.V. Danilov ◽  
G.V. Grudiyev

AbstractSurface irrigation is one of the most common irrigation methods, but it has its own significant drawbacks. A mobile pipeline for furrow irrigation from closed irrigation network was designed and its parameters were proved in order to improve furrow irrigation. The mobile pipeline consists of plastic pipes based on 10 pairs of spring skis connected in the middle by a flexible connection. It is known that water flow into the furrow decreases along the pipeline due to pressure losses along the length of the pipeline. It was proposed to use water outlets ensuring uniform supply of water to each furrow by the presence of the butterfly valve in housing of the water outlet in the mobile pipeline. In order to ensure sustainable valve position, an equation was derived and values of the area of the upper and bottom parts of the valve were obtained. According to the pipeline field test results, water distribution uniformity coefficient through the outlets was 0.98, at a flow rate of 1.0-3.0 l∙s-1 and hydraulic slopes along the pipeline of 0.001−0.005.


2016 ◽  
Vol 37 (5) ◽  
pp. 2947
Author(s):  
Vinicius Mendes Rodrigues de Oliveira ◽  
João Alberto Fischer Filho ◽  
José Renato Zanini ◽  
Luis César Dias Drumond

Water wastage is a great concern worldwide. Water is effectively utilized by using equipment and systems that have more uniform water distribution. The objective of this study was to evaluate the performance of the FR Super 10 sprinkler with a pressure compensator under different pressures, spacing, and installation heights. The tests were performed in the laboratory, and pressure was controlled with two gauges calibrated with a mercury column. The distribution uniformity was measured using the Christiansen uniformity coefficient (CUC) and distribution uniformity coefficient (CUD). Four spray nozzles were utilized for the Super 10 sprinkler, at two heights (0.6 and 1.2 m), six pressures (25, 30, 35, 40, 45, and 50 m H2O), and six spacings (9 × 9, 9 × 10, 10 × 10, 9 × 12, 10 × 12, and 12 × 12 m). The blue, yellow, and red nozzles presented self-compensating features and the green nozzle was not fully self-compensating. The manufacturing coefficients of variations were lower in the nozzles with smaller apertures (blue and yellow) compared to those with larger apertures. Increasing the sprinkler height provided better water distribution uniformity and a better radial distribution profile, lowering the application rate near the sprinkler. Since this sprinkler compensates for pressure changes, pressure did not influence the sprinkler range.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1427
Author(s):  
Tiago Barros Afonso ◽  
Lúcia Chaves Simões ◽  
Nelson Lima

Biofilms can be considered the main source of microorganisms in drinking water distribution systems (DWDS). The ecology of a biofilm is dependent on a variety of factors, including the presence of microbial metabolites excreted by its inhabitants. This study reports the effect of the Gram-negative bacteria Methylobacterium oryzae on the idh gene expression levels and patulin production of Penicillium expansum mature biofilms. For this purpose, a RT-qPCR method to quantify idh mRNA levels was applied. In addition, the idh expression levels were compared with the patulin production. The results obtained revealed that the effect of the bacterium on pre-established P. expansum biofilms is dependent on the time of interaction. More mature P. expansum biofilms appear to be more resistant to the inhibitory effect that M. oryzae causes towards idh gene expression and patulin production. A positive trend was observed between the idh expression and patulin production values. The results indicate that M. oryzae affects patulin production by acting at the transcriptional level of the idh gene.


Sign in / Sign up

Export Citation Format

Share Document