scholarly journals Chaotropic substances and their effects on the mechanical strength of Portland cement-based materials

2008 ◽  
Vol 11 (2) ◽  
pp. 183-185 ◽  
Author(s):  
Hebert Luis Rossetto ◽  
Milton Ferreira de Souza ◽  
Victor Carlos Pandolfelli
Nanomaterials ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 638 ◽  
Author(s):  
Wenguang Jiang ◽  
Xiangguo Li ◽  
Yang Lv ◽  
Mingkai Zhou ◽  
Zhuolin Liu ◽  
...  

The influence of graphene oxide (GO) and polyvinyl alcohol (PVA) fiber on the mechanical performance, durability, and microstructure of cement-based materials was investigated in this study. The results revealed that compared with a control sample, the mechanical strength and durability of cement-based materials were significantly improved by adding PVA fiber and GO. The compressive and flexural strength at 28 d were increased by 30.2% and 39.3%, respectively. The chloride migration coefficient at 28 d was reduced from 7.3 × 10−12 m2/s to 4.3 × 10−12 m2/s. Under a sulfate corrosion condition for 135 d, the compressive and flexural strength still showed a 13.9% and 12.3% gain, respectively. Furthermore, from the Mercury Intrusion Porosimetry (MIP) test, with the incorporation of GO, the cumulative porosity decreased from more than 0.13 cm3/g to about 0.03 cm3/g, and the proportion of large capillary pores reduced from around 80% to 30% and that of medium capillary pores increased from approximately 20% to 50%. Scanning electron microscope (SEM) images showed a significant amount of hydration products adhering to the surface of PVA fiber in the GO and PVA fiber modified sample. The addition of GO coupling with PVA fiber in cement-based materials could promote hydration of cement, refine the microstructure, and significantly improve mechanical strength and durability.


2018 ◽  
Vol 68 (330) ◽  
pp. 157 ◽  
Author(s):  
C. Argiz ◽  
E. Reyes ◽  
A. Moragues

By mixing several binder materials and additions with different degrees of fineness, the packing density of the final product may be improved. In this work, ultrafine cement and silica fume mixes were studied to optimize the properties of cement-based materials. This research was performed in mortars made of two types of cement (ultrafine Portland cement and common Portland cement) and two types of silica fume with different particle-size distributions. Two Portland cement replacement ratios of 4% and 10% of silica fume were selected and added by means of a mechanical blending method. The results revealed that the effect of the finer silica fume mixed with the coarse cement enhances the mechanical properties and pore structure refinement at a later age. This improvement is somewhat lower in the case of ultrafine cement with silica fume.


Cerâmica ◽  
2020 ◽  
Vol 66 (379) ◽  
pp. 330-339
Author(s):  
C. da Silva ◽  
D. S. S. Godinho ◽  
A. Ribeiro ◽  
A. Ferronato ◽  
A. B. S. dos Santos Neto ◽  
...  

Abstract Concrete structures must be sized to ensure stability over their lifetime. Moreover, there are criteria that must be followed for fire safety verification. Given this context, this study aimed to evaluate the influence of the partial and integral replacement of CPII-Z32 cement by a refractory cement in concrete compositions related to the residual properties after exposure to different temperature levels. For the tests, cylindrical specimens were molded with cement replacement percentages of 0% (reference), 50%, and 100%, and exposed at 450 °C and 900 °C without load. The results showed a change in the color of the specimens and a reduction of the mechanical strength with increasing temperature. The increase in the percentage of refractory cement resulted in lower heat conduction for the concrete made with this material.


2013 ◽  
Vol 328 ◽  
pp. 863-866
Author(s):  
Jun Liu ◽  
Yun Zhang ◽  
Run Qing Liu ◽  
Fang Zhi Lin ◽  
Zi Yan Huang

The mechanical strength change trend of Portland cement at different temperatures (+5°C, 0°C,-5°C,-10°C) was researched, and hydration performance and slurry structure of Portland cement was studied. Results showed that hydration process of Portland cement didn't vary with the lowering of curing temperature, but each stage of hydration time extended. The temperature decrease prolonged formation time of hydration products, making the early microstructure to loose, produces more pores, and causes the early mechanical strength of Portland cement to decrease.


Sign in / Sign up

Export Citation Format

Share Document