scholarly journals Influence of substitution of Portland cement CP-II-Z32 by refractory cement on residual properties of high-temperature concrete

Cerâmica ◽  
2020 ◽  
Vol 66 (379) ◽  
pp. 330-339
Author(s):  
C. da Silva ◽  
D. S. S. Godinho ◽  
A. Ribeiro ◽  
A. Ferronato ◽  
A. B. S. dos Santos Neto ◽  
...  

Abstract Concrete structures must be sized to ensure stability over their lifetime. Moreover, there are criteria that must be followed for fire safety verification. Given this context, this study aimed to evaluate the influence of the partial and integral replacement of CPII-Z32 cement by a refractory cement in concrete compositions related to the residual properties after exposure to different temperature levels. For the tests, cylindrical specimens were molded with cement replacement percentages of 0% (reference), 50%, and 100%, and exposed at 450 °C and 900 °C without load. The results showed a change in the color of the specimens and a reduction of the mechanical strength with increasing temperature. The increase in the percentage of refractory cement resulted in lower heat conduction for the concrete made with this material.

2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Muruganantham Ponnusamy ◽  
Bhanu Pratap Pulla ◽  
T. Sathish ◽  
Sivakumar Karthikeyan ◽  
S. Ravindran ◽  
...  

The Al-Zn-Mg alloy comes under the aluminium alloy; it possesses good capability of age hardening and superior strength in contrast to other alloys. The numbers of creep aging experiments are conducted with the support of different temperature levels such as 180, 200, and 2000°C. The effects of tests are reflected on the tensile test and fatigue tests; the temperature and stress directly affects the creep characteristics, mechanical strength, and fatigue performance of the Al-Zn-Mg alloy. The time period of the creep test is maintained as 15 hrs with constant load of 200 MPa and 220 MPa. The increasing temperature increases the tensile strength and fatigue life of the Al-Zn-Mg alloy under initial condition; furthermore, continuous increment reduces the strength and fatigue existence. In the fatigue test, the fatigue span of the Al-Zn-Mg is extremely enhanced by the application of creep aging at a particular temperature. The 3D profilometry image visibly shows the influence of temperature in forming a fracture in fatigue analysis through microstructure analysis.


Alloy Digest ◽  
2009 ◽  
Vol 58 (8) ◽  

Abstract DMV 59 is the material of choice for a wide variety of applications where significant corrosion resistance and high mechanical strength is necessary. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, and joining. Filing Code: Ni-672. Producer or source: Mannesmann DMV Stainless USA Inc.


Alloy Digest ◽  
1954 ◽  
Vol 3 (5) ◽  

Abstract Nimonic 80 and Nimonic 80A are nickel-base alloys containing a high percentage of chromium, with aluminum and titanium as hardening agents. They are made to the same compositional specification, but Nimonic 80A is produced to meet a more severe requirement with respect to resistance to creep when stressed at higher temperatures than Nimonic 80. Both alloys show high strength at high temperature levels and are very resistant to scaling, oxidation, heat and corrosion. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-10. Producer or source: Henry Wiggin & Company Ltd.


Alloy Digest ◽  
1998 ◽  
Vol 47 (2) ◽  

Abstract Incoloy Alloy 864 is a high performance alloy developed specifically for automotive exhaust system flexible couplings and other exhaust applications. The alloy has a good combination of oxidation and corrosion resistance, with good mechanical strength, stability, and fatigue properties. This datasheet provides information on composition, physical properties, and elasticity. It also includes information on high temperature performance and corrosion resistance as well as joining. Filing Code: SS-708. Producer or source: Inco Alloys International Inc.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Li Shen ◽  
Qiang Zeng

AbstractIn the present paper, with using diverse methods (including the SEM, the XRD, the TPO, the FTIR, and the TGA) , the authors analysed samples of the major coal seam in Dahuangshan Mining area with different particle sizes and with different heated temperatures (from 50 to 800 °C at regular intervals of 50 °C). The results from SEM and XRD showed that high temperature and high number of pores, fissures, and hierarchical structures in the coal samples could facilitate oxidation reactions and spontaneous combustion. A higher degree of graphitization and much greater number of aromatic microcrystalline structures facilitated spontaneous combustion. The results from TPO showed that the oxygen consumption rate of the coal samples increased exponentially with increasing temperature. The generation rates of different gases indicated that temperatures of 90 °C or 130 °C could accelerate coal oxidation. With increasing temperature, the coal oxidation rate increased, and the release of gaseous products was accelerated. The FTIR results showed that the amount of hydroxide radicals and oxygen-containing functional groups increased with the decline in particle size, indicating that a smaller particle size may facilitate the oxidation reaction and spontaneous combustion of coal. The absorbance and the functional group areas at different particle sizes were consistent with those of the heated coal samples, which decreased as the temperature rose. The results from TGA showed that the characteristic temperature T3 declined with decreasing particle size. After the sample with 0.15–0.18 mm particle size was heated, its carbon content decreased, and its mineral content increased, inhibiting coal oxidation. This result also shows that the activation energy of the heated samples tended to increase at the stage of high-temperature combustion with increasing heating temperature.


Holzforschung ◽  
2011 ◽  
Vol 65 (4) ◽  
Author(s):  
Jenny Sabrina Gütsch ◽  
Herbert Sixta

Abstract The implementation of biorefinery concepts into existing pulp and paper mills is a key step for a sustainable utilization of the natural resource wood. Water prehydrolysis of wood is an interesting process for the recovery of xylo-oligosaccharides and derivatives thereof, while at the same time cellulose is preserved to a large extent for subsequent dissolving pulp production. The recovery of value-added products out of autohydrolyzates is frequently hindered by extensive lignin precipitation, especially at high temperatures. In this study, a new high-temperature adsorption process (HiTAC process) was developed, where lignin is removed directly after the autohydrolysis, which enables further processing of the autohydrolyzates. The suitability of activated charcoals as a selective adsorbent for lignin under process-relevant conditions (150 and 170°C) has not been considered up to now, because former experiments showed decreasing efficiency of charcoal adsorption of lignin with increasing temperature in the range 20–80°C. In contrast to these results, we demonstrated that the adsorption of lignin at 170°C directly after autohydrolysis is even more efficient than after cooling the hydrolyzate to room temperature. The formation of lignin precipitation and incrustations can thus be efficiently prevented by the HiTAC process. The carbohydrates in the autohydrolysis liquor remain unaffected over a wide charcoal concentration range and can be further processed to yield valuable products.


Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Guanghui Jiang ◽  
Jianping Zuo ◽  
Teng Ma ◽  
Xu Wei

Understanding the change of permeability of rocks before and after heating is of great significance for exploitation of hydrocarbon resources and disposal of nuclear waste. The rock permeability under high temperature cannot be measured with most of the existing methods. In this paper, quality, wave velocity, and permeability of granite specimen from Maluanshan tunnel are measured after high temperature processing. Quality and wave velocity of granite decrease and permeability of granite increases with increasing temperature. Using porosity as the medium, a new wave velocity-permeability model is established with modified wave velocity-porosity formula and Kozeny-Carman formula. Under some given wave velocities and corresponding permeabilities through experiment, the permeabilities at different temperatures and wave velocities can be obtained. By comparing the experimental and the theoretical results, the proposed formulas are verified. In addition, a sensitivity analysis is performed to examine the effect of particle size, wave velocities in rock matrix, and pore fluid on permeability: permeability increases with increasing particle size, wave velocities in rock matrix, and pore fluid; the higher the rock wave velocity, the lower the effect of wave velocities in rock matrix and pore fluid on permeability.


2017 ◽  
Vol 147 ◽  
pp. 339-351 ◽  
Author(s):  
Muhammad Abid ◽  
Xiaomeng Hou ◽  
Wenzhong Zheng ◽  
Raja Rizwan Hussain

Author(s):  
Mustafa Bulut Coskun ◽  
Mahmut Faruk Aksit

With the race for higher power and efficiency new gas turbines operate at ever increasing pressures and temperatures. Increased compression ratios and firing temperatures require many engine parts to survive extended service hours under large pressure loads and thermal distortions while sustaining relative vibratory motion. On the other hand, wear at elevated temperatures limits part life. Combined with rapid oxidation for most materials wear resistance reduces rapidly with increasing temperature. In order to achieve improved wear performance at elevated temperatures better understanding of combined wear and oxidation behavior of high temperature super alloys and coatings needed. In an attempt to aid designers for high temperature applications, this work provides a quick reference for the high temperature friction and wear research available in open literature. High temperature friction and wear data have been collected, grouped and summarized in tables.


Sign in / Sign up

Export Citation Format

Share Document