Seasonal evapotranspiration of irrigated cotton in a low-latitude environment

1967 ◽  
Vol 18 (2) ◽  
pp. 259 ◽  
Author(s):  
WR Stern

Evapotranspiration (Et) from irrigated cotton was determined on a sequence of plantings covering a whole year. Averaged over the year, evapotranspiration directly after irrigation (Et1) was greater than the Penman estimate of potential evaporation (E) but less than the evaporation from a standard Australian tank (Etank). The mean annual ratios were 1.2 for Et1/E and 0.9 for Et1/Etank. The rate of evapotranspiration was a function of soil moisture, declining rapidly as the available moisture fell below 60 %. Because of the high variability in the estimates of evapotranspiration it was not possible to evaluate precisely the influence of growth stage on evapotranspiration. Although there was evidence that evapotranspiration varied with the stage of growth, meteorological factors were a dominant influence because of the high watering regime. Overall, a crop planted in the wet season used little more water than a crop planted in the dry season. After the maximum leaf area index (LAI) had been reached, evapotranspiration in the wet season crop declined more rapidly and fell to a lower value than evapotranspiration during the corresponding period in the dry season crop. Water was used more efficiently by the wet season crop than by the dry season crop. The conclusion was reached that in this environment advection of energy persisted for most of the year, and that during periods of rapid height increases, particularly when ground cover was incomplete, crop surface roughness enhanced evapotranspiration. The possible interactions of some of the factors influencing evapotranspiration in a crop in the field are discussed.

Author(s):  
Benjamin I Cook ◽  
Kimberly Slinski ◽  
Christa Peters-Lidard ◽  
Amy McNally ◽  
Kristi Arsenault ◽  
...  

AbstractTerrestrial water storage (TWS) provides important information on terrestrial hydroclimate and may have value for seasonal forecasting because of its strong persistence. We use the NASA Hydrological Forecast and Analysis System (NHyFAS) to investigate TWS forecast skill over Africa and assess its value for predicting vegetation activity from satellite estimates of leaf area index (LAI). Forecast skill is high over East and Southern Africa, extending up to 3–6 months in some cases, with more modest skill over West Africa. Highest skill generally occurs during the dry season or beginning of the wet season when TWS anomalies from the previous wet season are most likely to carry forward in time. In East Africa, this occurs prior to and during the transition into the spring “Long Rains” from January–March, while in Southern Africa this period of highest skill starts at the beginning of the dry season in April and extends through to the start of the wet season in October. TWS is highly and positively correlated with LAI, and a logistic regression model shows high cross-validation skill in predicting above or below normal LAI using TWS. Combining the LAI regression model with the NHyFAS forecasts, 1-month lead LAI predictions have high accuracy over East and Southern Africa, with reduced but significant skill at 3-month leads over smaller sub-regions. This highlights the potential value of TWS as an additional source of information for seasonal forecasts over Africa, with direct applications to some of the most vulnerable agricultural regions on the continent.


1988 ◽  
Vol 24 (2) ◽  
pp. 183-189 ◽  
Author(s):  
D. P. Singh ◽  
P. K. Singh

SUMMARYThe effects of phosphorus fertilizer and the insecticide carbofuran on the growth and N2-fixation of Azolla pinnata and on the growth, grain yield and nitrogen uptake of intercropped rice were examined in a wet and a dry season. Treatment with phosphorus or carbofuran increased the biomass of Azolla and the amount of nitrogen fixed (nitrogen yield) in both seasons, but the response was much better in the dry season. Azolla inoculation at 1.0 t ha−1 resulted in a greater bio mass and nitrogen yield than inoculation at 0.5 t ha−1. In the dry season, a combination of phosphorus and carbofuran enhanced the growth and N2-fixation of Azolla more than either treatment alone. Carbofuran treatment slowed the rate of decomposition of Azolla, particularly in the dry season. The plant height, leaf area index and dry matter production of rice at flowering time were increased in the plots treated with phosphorus or carbofuran in the wet season and these treatments increased rice grain yield and nitrogen uptake in both the wet and dry seasons.


2021 ◽  
Vol 25 (5) ◽  
pp. 841-845
Author(s):  
C.A.E. Ibhadode ◽  
I.R. Ilaboya

Groundwater pollution by heavy metals such as lead, copper, nickel and iron is one of the major environmental issues of concern which has developed into a widely studied area. In this study, attempt was made to investigate the level of heavy metals in selected boreholes around the vicinity of cemeteries in Benin City. Seventy-two (72) samples of groundwater were taken from boreholes in 9 stations around the three cemeteries in Benin City on monthly basis. The samples were analysed for 7 heavy metals, in accordance with standard procedures. The heavy metals include; Zinc, Lead Iron, Copper, Cadmium, Nickel and Mercury. From the results of the study, a variation in the mean concentration of zinc was observed. The mean concentration of zinc in site 1 was 0.450mg/l, for site 2, it was 0.140mg/l and for site 3, it was 1.0533mg/l. For iron, mean concentration was 0.072mg/l in site 1. For site 2, mean concentration of iron was 2.140mg/l and for site 3, mean concentration of iron was 0.560mg/l. It was further revealed based on the results that mean value of heavy metals in groundwater around cemeteries in Benin City were generally lower during dry season compared to wet season. In addition, result of computed pollution index (Pi) revealed that the heavy metal with the highest potential to pollute groundwater is Cadmium, with Pi of 0.5333 and 0.400 representing dry season and wet season respectively.


2018 ◽  
Vol 18 (14) ◽  
pp. 10773-10797 ◽  
Author(s):  
John E. Shilling ◽  
Mikhail S. Pekour ◽  
Edward C. Fortner ◽  
Paulo Artaxo ◽  
Suzane de Sá ◽  
...  

Abstract. The Green Ocean Amazon (GoAmazon 2014/5) campaign, conducted from January 2014 to December 2015 in the vicinity of Manaus, Brazil, was designed to study the aerosol life cycle and aerosol–cloud interactions in both pristine and anthropogenically influenced conditions. As part of this campaign, the U.S. Department of Energy (DOE) Gulfstream 1 (G-1) research aircraft was deployed from 17 February to 25 March 2014 (wet season) and 6 September to 5 October 2014 (dry season) to investigate aerosol and cloud properties aloft. Here, we present results from the G-1 deployments focusing on measurements of the aerosol chemical composition and secondary organic aerosol (SOA) formation and aging. In the first portion of the paper, we provide an overview of the data and compare and contrast the data from the wet and dry season. Organic aerosol (OA) dominates the deployment-averaged chemical composition, comprising 80 % of the non-refractory PM1 aerosol mass, with sulfate comprising 14 %, nitrate 2 %, and ammonium 4 %. This product distribution was unchanged between seasons, despite the fact that total aerosol loading was significantly higher in the dry season and that regional and local biomass burning was a significant source of OA mass in the dry, but not wet, season. However, the OA was more oxidized in the dry season, with the median of the mean carbon oxidation state increasing from −0.45 in the wet season to −0.02 in the dry season. In the second portion of the paper, we discuss the evolution of the Manaus plume, focusing on 13 March 2014, one of the exemplary days in the wet season. On this flight, we observe a clear increase in OA concentrations in the Manaus plume relative to the background. As the plume is transported downwind and ages, we observe dynamic changes in the OA. The mean carbon oxidation state of the OA increases from −0.6 to −0.45 during the 4–5 h of photochemical aging. Hydrocarbon-like organic aerosol (HOA) mass is lost, with ΔHOA∕ΔCO values decreasing from 17.6 µg m−3 ppmv−1 over Manaus to 10.6 µg m−3 ppmv−1 95 km downwind. Loss of HOA is balanced out by formation of oxygenated organic aerosol (OOA), with ΔOOA∕ΔCO increasing from 9.2 to 23.1 µg m−3 ppmv−1. Because hydrocarbon-like organic aerosol (HOA) loss is balanced by OOA formation, we observe little change in the net Δorg∕ΔCO values; Δorg∕ΔCO averages 31 µg m−3 ppmv−1 and does not increase with aging. Analysis of the Manaus plume evolution using data from two additional flights in the wet season showed similar trends in Δorg∕ΔCO to the 13 March flight; Δorg∕ΔCO values averaged 34 µg m−3 ppmv−1 and showed little change over 4–6.5 h of aging. Our observation of constant Δorg∕ΔCO are in contrast to literature studies of the outflow of several North American cities, which report significant increases in Δorg∕ΔCO for the first day of plume aging. These observations suggest that SOA formation in the Manaus plume occurs, at least in part, by a different mechanism than observed in urban outflow plumes in most other literature studies. Constant Δorg∕ΔCO with plume aging has been observed in many biomass burning plumes, but we are unaware of reports of fresh urban emissions aging in this manner. These observations show that urban pollution emitted from Manaus in the wet season forms less particulate downwind as it ages than urban pollution emitted from North American cities.


2016 ◽  
Author(s):  
Diego A. Gouveia ◽  
Boris Barja ◽  
Henrique M. J. Barbosa ◽  
Theotônio Pauliquevis ◽  
Paulo Artaxo

Abstract. For one year, from July 2011 to June 2012, a ground-based raman lidar provided atmospheric observations north of Manaus, Brazil, at an experimental site (2.89° S and 59.97° W) for long-term aerosol and cloud measurements. Upper tropospheric cirrus clouds were observed more frequently than previous reports in tropical regions. The frequency of occurrence was found to be as high as 82 % during the wet season and not lower than 55 % during the dry season. The diurnal cycle shows a minimum around local noon and maximum during late afternoon, associated with the diurnal cycle precipitation. Optical and geometrical characteristics of these cirrus clouds were derived. The mean values were 14.4 ± 2.0 km (top), 12.7 ± 2.3 km (base), 1.7 ± 1.5 km (thickness), and 0.36 ± 1.20 (cloud optical depth). Cirrus clouds were found at temperatures down to –90 °C and 7 % were above the tropopause base. The vertical distribution was not uniform and two cloud types were identified: (1) cloud base > 14 km and optical depth ~0.02, and (2) cloud base < 14 km and optical depth ~0.2. A third type, not previously reported, was identified during the wet season, between 16 and 18 km with optical depth ~0.005. The mean lidar ratio was 20.2 ± 7.0 sr, indicating a mixture of thick plates and long columns. However, the clouds above 14 km have a bimodal distribution during the dry season with a secondary peak at about 40 sr suggesting that thin plates are a major habit. A dependence of the lidar ratio with cloud temperature (altitude) was not found, thus indicating they are well mixed in the vertical. Cirrus clouds classified as subvisible (τ < 0.03) were 40 %, whilst 37.7 % were thin cirrus (0.03 < τ < 0.3) and 22.3 % opaque cirrus (τ > 0.3). Hence, not only does the central Amazon have a high frequency of cirrus clouds, but a large fraction of subvisible cirrus clouds as well. This high frequency of subvisible cirrus clouds may contaminate aerosol optical depth measured by sun-photometers and satellite sensors to an unknown extent.


2019 ◽  
Vol 11 (7) ◽  
pp. 829 ◽  
Author(s):  
Timothy Dube ◽  
Santa Pandit ◽  
Cletah Shoko ◽  
Abel Ramoelo ◽  
Dominic Mazvimavi ◽  
...  

Knowledge on rangeland condition, productivity patterns and possible thresholds of potential concern, as well as the escalation of risks in the face of climate change and variability over savanna grasslands is essential for wildlife/livestock management purposes. The estimation of leaf area index (LAI) in tropical savanna ecosystems is therefore fundamental for the proper planning and management of this natural capital. In this study, we assess the spatio-temporal seasonal LAI dynamics (dry and wet seasons) as a proxy for rangeland condition and productivity in the Kruger National Park (KNP), South Africa. The 30 m Landsat 8 Operational Land Imager (OLI) spectral bands, derived vegetation indices and a non-parametric approach (i.e., random forest, RF) were used to assess dry and wet season LAI condition and variability in the KNP. The results showed that RF optimization enhanced the model performance in estimating LAI. Moderately high accuracies were observed for the dry season (R2 of 0.63–0.72 and average RMSE of 0.60 m2/m2) and wet season (0.62–0.63 and 0.79 m2/m2). Derived thematic maps demonstrated that the park had high LAI estimates during the wet season when compared to the dry season. On average, LAI estimates ranged between 3 and 7 m2/m2 during the wet season, whereas for the dry season most parts of the park had LAI estimates ranging between 0.00 and 3.5 m2/m2. The findings indicate that Kruger National Park had high levels of productivity during the wet season monitoring period. Overall, this work shows the unique potential of Landsat 8-derived metrics in assessing LAI as a proxy for tropical savanna rangelands productivity. The result is relevant for wildlife management and habitat assessment and monitoring.


2010 ◽  
Vol 70 (1) ◽  
pp. 19-24 ◽  
Author(s):  
JP. Lemos-Filho ◽  
CFA. Barros ◽  
GPM. Dantas ◽  
LG. Dias ◽  
RS. Mendes

Canopy cover has significant effects on the understory environment, including upon light availability for seedling growth. The aim of the present study was to verify spatial heterogeneity and seasonal changes in the canopy cover of a dense Cerrado area, and their relationship to understory photosynthetic active radiation availability. Leaf area index (LAI) values in the rainy season varied from 0.9 to 4.83, with 40% of the values ranging from 4.0 to 5.0, while in the dry season LAI varied from 0.74 to 3.3, with 53% of the values oscilating from 2.0 to 3.0. Understory light (Qi ) and the Lambert-Beer ratio (Qi/Qo) were taken around noon on sunny days (between 11:00 AM and 1:00 PM). They were also statistically different (p < 0.01) between the dry and wet seasons, with 72% of sampled points in the rainy season presenting photosynthetic photon flux density (PPFD) values lower than 250 μmol.m-2/s around noon, whereas in the dry season, most PPFD values varied from 1500 to 1817 μmol.m-2/s , thus providing high light availability for understory plants. In most of the studied sites, understory plants did not even receive enough light for 50% of their photosynthetic capacity in the wet season. In contrast during the dry season, Qi/Qo values of 0.8 to 1.0 were observed in more than 50% of the points, thereby allowing for photosynthetic light saturation. Thus, light variability around noon was higher during the dry season than in the wet season, its heterogeneity being related to spatial complexity in the canopy cover.


1962 ◽  
Vol 58 (2) ◽  
pp. 257-264 ◽  
Author(s):  
P. N. Wilson ◽  
M. A. Barratt ◽  
M. H. Butterworth

1. The water intakes of ten Holstein × Zebu milking cows, yielding between one and two gallons of milk a day, were analysed on the basis of (a) freewater drunk, and (b) feed-water consumed with the herbage. Trials took place during a 10-day period in both the wet season, 1959 and the dry season, 1960. During both seasons the cows were rotationally grazed on Pangola grass pastures.2. The results showed a difference of only 24% in total water intake between seasons. However, the mean intake of free water increased from 18·5 lb. per cow in the wet season to 81·5 lb. per cow per day in the dry season, and the intake of feed water decreased from 94·9 to 59·2 lb. per cow per day, respectively. The between cow coefficients of variation were 9·7 and 8·7%, respectively.3. Results are presented for the drinking habits of Holstein × Zebu cattle grazing Pangola grass pastures. For 567 observed cow-days in the wet season, the cattle were found to drink water on average 0·8 times per day from troughs present in the pastures. For 332 observed cow-days in the dry season, the cattle increased their drinking habits to a mean figure of 1·4 times each day.


1971 ◽  
Vol 11 (53) ◽  
pp. 593 ◽  
Author(s):  
JF Kennedy ◽  
GIK Chirchir

The mean birthweights and weaning weights of approximately 1200 male and female calves of the F2 and F3 generations of Africander cross (AX), Brahman cross (BX) and Shorthorn X Hereford cross (SH) cattle, together with the weights at four months, and nine months post weaning for approximately 500 of the females, for the years 1964-1968, are presented. BX calves (29.7 kg) were lighter at birth than AX (31.0 kg) or SH (31.8 kg), but at weaning (eight-nine months) they were 13.7 kg heavier than the AX, and 28.9 kg heavier than the SH. In the first four months postweaning, at the end of the dry-season, female AX gained 21.5 kg, BX gained 18.5 kg, and the SH 11.7 kg, and in the next five months, which included the wet-season, AX gained 78.6 kg, BX 83.1 kg, and SH 63.2 kg. At approximately eighteen months old the AX weighed 282.8 kg, BX 294.8 kg, and SH 244.2 kg. There were substantial differences between years but the rank order of the breeds at each growth period did not change.


1989 ◽  
Vol 29 (5) ◽  
pp. 631 ◽  
Author(s):  
WH Winter ◽  
JJ Mott ◽  
RW McLean

The effect of killing trees upon the production and quality of native perennial grasses, Themeda triandra, Chrysopogon fallax, Sehima nervosum, and Sorghum plumosum, and oversown legumes from the genus Stylosanthes, was studied over 4 years at Katherine, in the semi-arid tropics of northwestern Australia. The pastures were either unfertilised or received low inputs of superphosphate, and for each fertility level were grazed at 3 stocking rates. At no time were legume yields affected by killing the trees but, in the first 3 years, the amount of grass was approximately twice as much when the trees were killed. During this period the mean grass yields declined 4-5 fold from about 2.2 t/ha. By the fourth year the advantage from tree killing upon grass yield was apparent only at the lowest stocking rates at each fertility level. Nitrogen concentrations of the grasses and legumes, with the exception of S. hamata, were increased 7 and 10% respectively above the mean annual values of 0.89 and 1.75% where the trees were killed, while the phosphorus and sulfur concentrations were not affected. Tree killing had no effect upon wet season liveweight gains during the last 2 years of the experiment. However, there were some benefits during the dry season when weight losses were lower for most treatments during the early dry season (June-September) and also lower for the lowest stocking rate treatment without fertiliser during the late dry season (October-November).


Sign in / Sign up

Export Citation Format

Share Document