scholarly journals Distributions and phylogeographic data of rheophilic freshwater fishes provide evidences on the geographic extension of a central-brazilian amazonian palaeoplateau in the area of the present day Pantanal Wetland

2013 ◽  
Vol 11 (2) ◽  
pp. 319-326 ◽  
Author(s):  
Alexandre C. Ribeiro ◽  
Rodrigo M. Jacob ◽  
Ronnayana R. S. R. Silva ◽  
Flávio C. T. Lima ◽  
Daniela C. Ferreira ◽  
...  

The analysis of the distribution patterns presented by examples of freshwater fishes restricted to headwater habitat: the anostomid Leporinus octomaculatus, the characins Jubiaba acanthogaster, Oligosarcus perdido, Moenkhausia cosmops, Knodus chapadae, Planaltina sp., the loricariid Hypostomus cochliodon, and the auchenipterid Centromochlus sp. provided evidences of a relatively recent shared history between the highlands of the upper rio Paraguay and adjoining upland drainage basins. Restricted to headwater of the uplands in the upper rio Paraguay and adjoining basins, these species provide biological evidence of the former extension of the central Brazilian plateau before the origin of the Pantanal Wetland. Disjunction took place due to an ecological barrier to these rheophilic taxa represented tectonic subsidence related to the origin of the Pantanal Wetland. Molecular analysis of Jubiaba acanthogaster revealed that the sample from the upper rio Xingu basin are the sister-group of a clade that includes samples from the upper rio Arinos (upper rio Tapajós) plus the upper rio Paraguay basin, supporting the assumption that the origin of the upper rio Paraguay basin causing vicariance between this basin and the upper rio Tapajós is the least vicariant event in the evolutionary history of the group.

IAWA Journal ◽  
2011 ◽  
Vol 32 (4) ◽  
pp. 493-519 ◽  
Author(s):  
Anaïs Boura ◽  
Timothée Le Péchon ◽  
Romain Thomas

The Dombeyoideae (Malvaceae) are one of the most diversified groups of plants in the Mascarene Islands. Species of Dombeya Cav., Ruizia Cav. and Trochetia DC. are distributed in almost all parts of the archipelago and show a wide diversity in their growth forms. This study provides the first wood anatomical descriptions of 17 out of the 22 Mascarene species of Dombeyoideae. Their wood anatomy is similar to that of previously described species: wide vessels, presence of both apotracheal and paratracheal parenchyma, and storied structure. In addition, we also found a second wood anatomical pattern with narrower vessels, high vessel frequency and thick-walled fibres. The two aforementioned wood patterns are considered in a phylogenetic context and used to trace the evolutionary history of several wood anatomical features. For example, the pseudoscalariform pit arrangement supports a sister group relationship between Trochetia granulata Cordem. and T. blackburniana Bojer ex Baker and may be a new synapomorphy of the genus Trochetia. Finally, wood variability is evaluated in relation to geographic, climatic and biological data. Despite the juvenile nature of some of the specimens studied, we discuss how the habit, but also factors related to humidity, influence the variability observed in the Mascarene Dombeyoideae wood structure.


1984 ◽  
Vol 8 ◽  
pp. 182-198
Author(s):  
Catherine Badgley

The evolutionary history of humans is well understood in outline, compared to that of many other groups of mammals. But human evolution remains enigmatic in its details, and these are compelling both scientifically and personally because they relate to the biological uniqueness of humans. Humans are placed in the primate family Hominidae, which, in traditional classifications, contains a single living species, Homo sapiens. The closest living relatives of humans are great apes: the chimpanzees Pan paniscus and Pan troglodytes, the gorilla Gorilla gorilla, and the orangutan Pongo pygmaeus. These apes have traditionally been placed in the family Pongidae as the sister group of Hominidae. Living Hominidae and Pongidae, together with Hylobatidae (gibbons) comprise the modern representatives of the primate suborder Hominoidea.


2017 ◽  
Vol 31 (6) ◽  
pp. 765 ◽  
Author(s):  
Phillip Barden ◽  
Brendon Boudinot ◽  
Andrea Lucky

The distinctive ant genus Leptomyrmex Mayr, 1862 had been thought to be endemic to Australasia for over 150 years, but enigmatic Neotropical fossils have challenged this view for decades. The present study responds to a recent and surprising discovery of extant Leptomyrmex species in Brazil with a thorough evaluation of the Dominican Republic fossil material, which dates to the Miocene. In the first case study of direct fossil inclusion within Formicidae Latreille, 1809, we incorporated both living and the extinct Leptomyrmex species. Through simultaneous analysis of molecular and morphological characters in both Bayesian and parsimony frameworks, we recovered the fossil taxon as sister-group to extant Leptomyrmex in Brazil while considering the influence of taxonomic and character sampling on inferred hypotheses relating to tree topology, biogeography and morphological evolution. We also identified potential loss of signal in the binning of morphological characters and tested the impact of parameterisation on divergence date estimation. Our results highlight the importance of securing sufficient taxon sampling for extant lineages when incorporating fossils and underscore the utility of diverse character sources in accurate placement of fossil terminals. Specifically, we find that fossil placement in this group is influenced by the inclusion of male-based characters and the newly discovered Neotropical ‘Lazarus taxon’.


2008 ◽  
Vol 276 (1658) ◽  
pp. 879-886 ◽  
Author(s):  
Jérémy Anquetin ◽  
Paul M Barrett ◽  
Marc E.H Jones ◽  
Scott Moore-Fay ◽  
Susan E Evans

The discovery of a new stem turtle from the Middle Jurassic (Bathonian) deposits of the Isle of Skye, Scotland, sheds new light on the early evolutionary history of Testudinata. Eileanchelys waldmani gen. et sp. nov. is known from cranial and postcranial material of several individuals and represents the most complete Middle Jurassic turtle described to date, bridging the morphological gap between basal turtles from the Late Triassic–Early Jurassic and crown-group turtles that diversify during the Late Jurassic. A phylogenetic analysis places the new taxon within the stem group of Testudines (crown-group turtles) and suggests a sister-group relationship between E. waldmani and Heckerochelys romani from the Middle Jurassic of Russia. Moreover, E. waldmani also demonstrates that stem turtles were ecologically diverse, as it may represent the earliest known aquatic turtle.


Author(s):  
Francisco Prosdocimi ◽  
Sávio Torres de Farias

Genes and gene trees have been extensively used to study the evolutionary relationships among populations, species, families and higher systematic clades of organisms. This brought modern Biology into a sophisticated level of understanding about the evolutionary relationships and diversification patterns that happened along the entire history of organismal evolution in Earth. Genes however have not been placed in the center of questions when one aims to unravel the evolutionary history of genes themselves. Thus, we still ignore whether Insulin share a more recent common ancestor to Hexokinase or DNA polymerase. This brought modern Genetics into a very poor level of understanding about sister group relationships that happened along the entire evolutionary history of genes. Many conceptual challenges must be overcome to allow this broader comprehension about gene evolution. Here we aim to clear the intellectual path in order to provide a fertile research program that will help geneticists to understand the deep ancestry and sister group relationships among different gene families (or orthologs). We aim to propose methods to study gene formation starting from the establishment of the genetic code in pre-cellular organisms like the FUCA (First Universal Common Ancestor) until the formation of the highly complex genome of LUCA (Last UCA), that harbors hundreds of genes families working coordinated into a cellular organism. The deep understanding of ancestral relationships among orthologs will certainly inspire biotechnological and biomedical approaches and allow a deep understanding about how Darwinian molecular evolution operates inside cells and before the appearance of cellular organisms.


2018 ◽  
Author(s):  
Karla J Leite ◽  
Daniel C Fortier

Crocodyliformes have undergone few modifications in their morphology since they have emerged. The change in the position of the choana was important during the evolutionary history of this group. Such character is relevant in the phylogenetic position of many crocodyliforms. The Susisuchidae clade has been placed in different phylogenetic positions: as a sister group of Eusuchia, advanced Neosuchia and in Eusuchia. In Isisfordia there are reports that the choana of this taxon is or not fully enclosed by pterygoid. A new skull of cf. Susisuchus from the Crato Formation of the Santana Group (Lower Cretaceous) is described and we recover Susisuchidae in a new phylogenetic position within Eusuchia. The preservation in the ventral view of FPH-243-V allows character encoding not yet observed for the species. The new specimen shows a typical eusuchian palate for Susisuchus, in which the choana is fully enclosed by the pterygoid. The encoding of the ventral characters of Susisuchus places Susisuchidae in Eusuchia. However, this position must be further studied, since the matrices showed fragility in the reconstitution of the Neosuchia-Eusuchia transition.


Author(s):  
Robert J Kallal ◽  
Dimitar Dimitrov ◽  
Miquel A Arnedo ◽  
Gonzalo Giribet ◽  
Gustavo Hormiga

Abstract We address some of the taxonomic and classification changes proposed by Kuntner et al. (2019) in a comparative study on the evolution of sexual size dimorphism in nephiline spiders. Their proposal to recircumscribe araneids and to rank the subfamily Nephilinae as a family is fundamentally flawed as it renders the family Araneidae paraphyletic. We discuss the importance of monophyly, outgroup selection, and taxon sampling, the subjectivity of ranks, and the implications of the age of origin criterion to assign categorical ranks in biological classifications. We explore the outcome of applying the approach of Kuntner et al. (2019) to the classification of spiders with emphasis on the ecribellate orb-weavers (Araneoidea) using a recently published dated phylogeny. We discuss the implications of including the putative sister group of Nephilinae (the sexually dimorphic genus Paraplectanoides) and the putative sister group of Araneidae (the miniature, monomorphic family Theridiosomatidae). We propose continuation of the phylogenetic classification put forth by Dimitrov et al. (2017), and we formally rank Nephilinae and Phonognathinae as subfamilies of Araneidae. Our classification better reflects the understanding of the phylogenetic placement and evolutionary history of nephilines and phonognathines while maintaining the diagnosability of Nephilinae. It also fulfills the fundamental requirement that taxa must be monophyletic, and thus avoids the paraphyly of Araneidae implied by Kuntner et al. (2019).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Érica Martinha Silva de Souza ◽  
Lucas Freitas ◽  
Elisa Karen da Silva Ramos ◽  
Giovanna Selleghin-Veiga ◽  
Michelle Carneiro Rachid-Ribeiro ◽  
...  

AbstractThe manatee family encompasses three extant congeneric species: Trichechus senegalensis (African manatee), T. inunguis (Amazonian manatee), and T. manatus (West Indian manatee). The fossil record for manatees is scant, and few phylogenetic studies have focused on their evolutionary history. We use full mitogenomes of all extant manatee species to infer the divergence dates and biogeographical histories of these species and the effect of natural selection on their mitogenomes. The complete mitochondrial genomes of T. inunguis (16,851 bp), T. senegalensis (16,882 bp), and T. manatus (16,882 bp), comprise 13 protein-coding genes, 2 ribosomal RNA genes (rRNA - 12S and 16S), and 22 transfer RNA genes (tRNA), and (D-loop/CR). Our analyses show that the first split within Trichechus occurred during the Late Miocene (posterior mean 6.56 Ma and 95% HPD 3.81–10.66 Ma), followed by a diversification event in the Plio-Pleistocene (posterior mean 1.34 Ma, 95% HPD 0.1–4.23) in the clade composed by T. inunguis and T. manatus; T. senegalensis is the sister group of this clade with higher support values (pp > 0.90). The branch-site test identified positive selection on T. inunguis in the 181st position of the ND4 amino acid gene (LRT = 6.06, p = 0.0069, BEB posterior probability = 0.96). The ND4 gene encodes one subunit of the NADH dehydrogenase complex, part of the oxidative phosphorylation machinery. In conclusion, our results provide novel insight into the evolutionary history of the Trichechidae during the Late Miocene, which was influenced by geological events, such as Amazon Basin formation.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
E. Hekkala ◽  
J. Gatesy ◽  
A. Narechania ◽  
R. Meredith ◽  
M. Russello ◽  
...  

AbstractAncient DNA is transforming our ability to reconstruct historical patterns and mechanisms shaping modern diversity and distributions. In particular, molecular data from extinct Holocene island faunas have revealed surprising biogeographic scenarios. Here, we recovered partial mitochondrial (mt) genomes for 1300–1400 year old specimens (n = 2) of the extinct “horned” crocodile, Voay robustus, collected from Holocene deposits in southwestern Madagascar. Phylogenetic analyses of partial mt genomes and tip-dated timetrees based on molecular, fossil, and stratigraphic data favor a sister group relationship between Voay and Crocodylus (true crocodiles). These well supported trees conflict with recent morphological systematic work that has consistently placed Voay within Osteolaeminae (dwarf crocodiles and kin) and provide evidence for likely homoplasy in crocodylian cranial anatomy and snout shape. The close relationship between Voay and Crocodylus lends additional context for understanding the biogeographic origins of these genera and refines competing hypotheses for the recent extinction of Voay from Madagascar.


Sign in / Sign up

Export Citation Format

Share Document