scholarly journals VALIDATION OF THE DIGITAL ELEVATION MODEL (SRTM) WITH GNSS SURVEYING APPLIED TO THE MIRIM LAGOON HYDROGRAPHIC BASIN

2018 ◽  
Vol 24 (3) ◽  
pp. 407-425
Author(s):  
Patricia Andréia Paiola Scalco ◽  
Andrea Lopes Iescheck ◽  
Iran Carlos Stalliviere Corrêa ◽  
Fernando Comerlato Scottá ◽  
Rafael Mastracusa de Oliveira ◽  
...  

Abstract Between 2013 and 2014, a kinematic positioning based on the Global Navigation Satellite System (GNSS) was carried out for this research work. This GNSS survey resulted in 275916 points with tridimensional coordinates in the cross-border basin area of 58205 km2 called Mirim Lagoon Hydrographic Basin, located in south of Rio Grande do Sul (Brazil) and west of Uruguay. This study aims at showing the methodology firstly and, furthermore, results regarding the validation of the vertical accuracy of the DEM SRTM through kinematic positioning by GNSS, in the Mirim Lagoon Hydrographic Basin region. Also, the GNSS surveying data was post-processed with the Precise Point Positioning (PPP) method, and the ellipsoidal height was converted into orthometric height through the software INTPT geoid. During this study, the geopotential model (EGM96) was used to transform altitude differences between two countries, Brazil and Uruguay. Results showed that the vertical mean absolute error of the DEM SRTM vary from 0.07 m to ± 9.9m with average of -0.28m. This vertical accuracy is better than the absolute vertical accuracy value of ±16m published in the SRTM data specification and validates the DEM SRTM.

2019 ◽  
Vol 1 ◽  
pp. 1-2
Author(s):  
Andrea Lopes Iescheck ◽  
Patricia Andréia Paiola Scalco

<p><strong>Abstract.</strong> This work is part of a research project that aims at the automatic determination of knickpoints and the assessment of morphometric and hypsometric parameters of Mirim Lagoon Hydrographic Basin, using Shuttle Radar Topography Mission digital elevation model (SRTM-DEM) and spatial analyses.</p><p>The analysis of geomorphologic systems is done using computational treatment of data obtained by remote sensing, especially those obtained by SRTM. These data permit the elaboration of a topographic model for the Earth surface and provide a base for studies in several units of geomorphologic analyses (geomorphologic systems), such as hydrographic basins.</p><p>The most usual technique for derivation of relief morphologic attributes is based on digital elevation models (DEMs) and digital hydrographic nets. Computational routines are applied on those data for acquisition of the hydrography and drainage anomalies. The DEMs and the hydrographic nets must have either morphologic or hydrologic consistency to validate the results obtained in the morphometric analyses.</p><p>More specifically, this study aims at describing the method and related results regarding the validation of the vertical accuracy of SRTM-DEM through a kinematic positioning based on the Global Navigation Satellite System (GNSS), in the Mirim Lagoon Hydrographic Basin region. Mirim Lagoon Hydrographic Basin is as cross-border basin located on the Atlantic coast of South America, and covers an area of 58,407.78&amp;thinsp;km<sup>2</sup>, where 47% of this area is in Brazil and 53% in Uruguay.</p><p>Several studies deal with the validation of Digital Elevation Models (DEMs) and SRTM data using different GNSS surveying methods and receivers. The innovation of this work is the methodology developed to achieve the suitable accuracy for the control points coordinates to validate the SRTM-DEM of Mirim Lagoon Hydrographic Basin. The study used the kinematic relative positioning method with a recording rate of 1 second and without reference stations for post-processing with the precise point positioning (PPP) method. This methodology allowed covering a large area with reference stations being very far from the surveyed region and with different geodetic reference systems (two countries).</p><p>The methodology entails the GNSS data acquisition and post-processing, the transformation from geometric heights into orthometric heights, the SRTM-DEM mosaic, the extraction of homologous points in the SRTM-DEM and the statistical analyses for validating the model.</p><p>The study used a GNSS receiver of dual-frequency with recording rate of 1 second to collect a total of 275,916 points with 3D coordinates. Those points were post-processed using the PPP method with the Canadian Spatial Reference System &amp;ndash; Precise Point Positioning (CSRS-PPP), and the ellipsoidal height was converted into orthometric height through the software INTPT geoid. During this work, we used the geopotential model (EGM96) to transform height differences between two countries, Brazil and Uruguay.</p><p>In order to obtain the SRTM-DEM we used 15 SRTM images, version 3, band C, with a spatial resolution of 1 arcsecond (approximately 30&amp;thinsp;m). These images were individually processed to obtain the Digital Elevation Model Hydrologically Consistent (DEMHC) and to treat the inconsistencies. Afterwards, we created a mosaic with the 15 images.</p><p>In the statistical analysis we examined the magnitude of absolute errors in the SRTM data. These errors were named discrepancies between the SRTM heights and the heights of GNSS survey points. After the post-processing and the heights conversion, the GNSS survey points were considered accurate and used as a reference for SRTM-DEM validation. The goal of the statistical analysis was to verify if the absolute vertical precision of the DEM data exceeds 16&amp;thinsp;m, according to the precision specifications of the DEM SRTM.</p><p>Results showed that the vertical mean absolute error of the SRTM-DEM vary from 0.07&amp;thinsp;m to &amp;plusmn;&amp;thinsp;9.9&amp;thinsp;m with average of &amp;minus;0.28&amp;thinsp;m. This vertical accuracy is better than the absolute vertical accuracy value of &amp;plusmn;&amp;thinsp;16&amp;thinsp;m published in the SRTM data specification and validates the SRTM-DEM. Besides that, even considering different slopes and different heights the statistics showed that SRTM-DEM could be validated, in spite of the results for lower and flat area were more accurate than the ones for a higher area with high slope.</p>


2019 ◽  
Vol 35 (3) ◽  
pp. 431-437 ◽  
Author(s):  
Marcos Valle Bueno ◽  
Alexssandra Dayane Soares de Campos ◽  
Jaqueline Trombetta da Silva ◽  
Lessandro Coll Faria ◽  
Fabrício da Silva Terra ◽  
...  

Abstract. Levees are small land dikes made every rice-cultivation season that allow for flood irrigation in rice fields. Currently, levees are demarcated by utilizing a laser technology (LT) system. However, with current technological advances, the demarcation of levees with the Global Navigation Satellite System (GNSS) and real-time kinematics (RTK) correction has been highlighted in rice production systems in southern Brazil. The objective of this study was to compare the performance between LT and GNSS-RTK systems applied in the demarcation of levees that are used in flooded rice fields. To this end, an experimental area of approximately 27 ha located in Jaguarão, Rio Grande do Sul, Brazil, was used. From a digital elevation model, the area was subdivided into three subareas according to the mean slope: flat (0.16%), intermediate (0.36%), and gently undulated (1.3%). The total length of the levees for the three subareas was 8 km. The relative performances of both demarcation systems were evaluated by analyzing the vertical and horizontal behavior of the levees and the water layer spatial distribution. The results indicated that the demarcation of levees by GNSS-RTK systems is more accurate than that by the LT system, especially in flat areas. In these areas, the GNSS-RTK demarcation system permits a reduction in the total number of levees, as well as an increase in the vertical equidistance between levees and/or an increase in the height of the levee itself. The length of the levee is shorter than in a demarcation using the GNSS-RTK system. Keywords: Contour line, Irrigation, Lowlands, Precision agriculture.


Polar Record ◽  
2017 ◽  
Vol 53 (3) ◽  
pp. 280-288 ◽  
Author(s):  
Mariusz Pasik ◽  
Maria Elżbieta Kowalska ◽  
Sławomir Łapiński ◽  
Marcin Rajner ◽  
Krzysztof Bakuła

ABSTRACTThis paper presents survey measurements carried out during the 39th Polish Antarctic Expedition to the Henryk Arctowski Polish Antarctic Station in March 2015. The measurements were used to create a map on a 1:500 scale and for 3D modelling of the station buildings and vicinity. The paper also presents the geodetic control network established around the station. We discuss the issue of creating a digital elevation model for the station and its surroundings. The elevation models were generated using terrestrial laser scanning data integrated with Global Navigation Satellite System real time kinematic and tacheometric surveying. The accuracy of these models was estimated using height differences in relation to survey data. The mean height difference was 0.03 m and root mean square error was 0.05 m. Furthermore, an analysis of changes to the coastline was conducted using archival cartographic materials to assess the threat of Admiralty Bay to the station buildings. The results are important for continued scientific activity and safety at Arctowski Station, and may be useful for future research on King George Island.


2019 ◽  
Vol 8 (12) ◽  
pp. 532 ◽  
Author(s):  
Benjamin J. Babbel ◽  
Michael J. Olsen ◽  
Erzhuo Che ◽  
Ben A. Leshchinsky ◽  
Chase Simpson ◽  
...  

Uncrewed aircraft systems (UASs) with integrated light detection and ranging (lidar) technology are becoming an increasingly popular and efficient remote sensing method for mapping. Due to its quick deployment and comparatively inexpensive cost, uncrewed laser scanning (ULS) can be a desirable solution to conduct topographic surveys for areas sized on the order of square kilometers compared to the more prevalent and mature method of airborne laser scanning (ALS) used to map larger areas. This paper rigorously assesses the accuracy and quality of a ULS system with comparisons to terrestrial laser scanning (TLS) data, total station (TS) measurements, and Global Navigation Satellite System (GNSS) check points. Both the TLS and TS technologies are ideal for this assessment due to their high accuracy and precision. Data for this analysis were collected over a period of two days to map a landslide complex in Mulino, Oregon. Results show that the digital elevation model (DEM) produced from the ULS had overall vertical accuracies of approximately 6 and 13 cm at 95% confidence when compared to the TS cross-sections for the road surface only and road and vegetated surfaces, respectively. When compared to the TLS data, overall biases of −2.4, 1.1, and −2.7 cm were observed in X, Y, and Z with a 3D RMS difference of 8.8 cm. Additional qualitative and quantitative assessments discussed in this paper show that ULS can provide highly accurate topographic data, which can be used for a wide variety of applications. However, further research could improve the overall accuracy and efficiency of the cloud-to-cloud swath adjustment and calibration processes for georeferencing the ULS point cloud.


2013 ◽  
Vol 48 (4) ◽  
pp. 147-158
Author(s):  
Adam Ciećko ◽  
Wojciech Jarmołowski

ABSTRACT The article describes preliminary results of the augmentation of Global Navigation Satellite System/Inertial Navigation System positioning (GNSS/INS) by Digital Elevation Model (DEM) based on the data from the Shuttle Radar Topography Mission (SRTM) and data from field survey. The prototype software is developed to refer the position of the aircraft to DEM and informs the user about the current relevant flight parameters. The number of the parameters may be arbitrarily increased, however, currently we investigate the altitude above the terrain and the aircraft position relative to the descent path and airfield. The study provides some information on the local SRTM accuracy in relation to the field survey of the airfield "Dajtki" - Aeroclub of Warmia and Mazury in Olsztyn.


2021 ◽  
Vol 5 (1) ◽  
pp. 11-21
Author(s):  
Sangay Gyeltshen ◽  
Krisha Kumar Subedi ◽  
Laylo Zaridinova Kamoliddinovna ◽  
Jigme Tenzin

The study assessed the accuracies of globally available Digital Elevation Models (DEM’s) i.e., SRTM v3, ASTER GDEM v2 and ALOS PALSAR DEM with respect to Topo-DEM derived from topographic map of 5m contour interval. 100 ground control points of the elevation data were collected with the help of kinematic hand held GNSS (Global Navigation Satellite System), randomly distributed over the study area. The widely used RMSE statistic, NCC correlation and sub-pixel-based approach were applied to evaluate the erroneous, correlation, horizontal and vertical displacement in terms of pixels for the individual Digital Elevation Model. Following these evaluations, SRTM DEM was found to be highly accurate in terms of RMSE and displacement compared to other DEMs. This study is intended to provide the researchers, GIS specialists and the government agencies dealing with remote sensing and GIS, a basic clue on accuracy of the DEMs so that the best model can be selected for application on various purposes of the similar region.


2021 ◽  
Vol 5 (3) ◽  
pp. 1475-1491
Author(s):  
Gisele Marilha Pereira Reginatto ◽  
Regiane Mara Sbroglia ◽  
Camilo Andrade Carreño ◽  
Bianca Rodrigues Schvartz ◽  
Pâmela Betiatto ◽  
...  

In translational landslide susceptibility analysis with SHALSTAB (Shallow Landsliding Stability Model), the resolution of the digital elevation model (DSM) is determinant for defining the type of mapping generated (preliminary or not). In this study, in order to verify the influence of the SDM scale on the SHALSTAB stability classes, susceptibility maps were prepared at two scales: 1:50,000 and 1:10,000. The study area was the Garcia River watershed, belonging to the municipality of Blumenau, Santa Catarina, affected by landslides in the 2008 catastrophe, which enabled the validation of the simulations with the scars mapped in the field. Thus, the influence of scale on the distribution of the model's stability classes and on its performance was verified. SHALSTAB performed better at the 1:10,000 scale, predicting 70% of the instabilities in a percentage of unstable area approximately three times smaller than at the 1,50,000 scale.


2022 ◽  
Vol 9 ◽  
Author(s):  
Hamad Al-Ajami ◽  
Ahmed Zaki ◽  
Mostafa Rabah ◽  
Mohamed El-Ashquer

A new gravimetric geoid model, the KW-FLGM2021, is developed for Kuwait in this study. This new geoid model is driven by a combination of the XGM2019e-combined global geopotential model (GGM), terrestrial gravity, and the SRTM 3 global digital elevation model with a spatial resolution of three arc seconds. The KW-FLGM2021 has been computed by using the technique of Least Squares Collocation (LSC) with Remove-Compute-Restore (RCR) procedure. To evaluate the external accuracy of the KW-FLGM2021 gravimetric geoid model, GPS/leveling data were used. As a result of this evaluation, the residual of geoid heights obtained from the KW-FLGM2021 geoid model is 2.2 cm. The KW-FLGM2021 is possible to be recommended as the first accurate geoid model for Kuwait.


Author(s):  
M. O. Ehigiator ◽  
S. O. Oladosu

With the use of Global Navigation Satellite System (GNSS) technology, it is now possible to determine the position of points in 3D coordinates systems. Lagos datum is the most common Mean Sea Level used in most parts of Nigeria. In Niger Delta, for instance Warri and its environs, the most commonly used datum for height determination is the Mean Lower Low Water Datum. It then becomes necessary to determine a constant factor for conversion between the two datum when the need arises as both are often encountered during Geomatics Engineering field operations. In this paper, the constant to be applied in converting between both datum was determined. The constant was found to be 17.79m. The horizontal and vertical accuracy standard was also determined as well as the stack maps.


Sign in / Sign up

Export Citation Format

Share Document