scholarly journals Evaluation of the SR Portland cement against sodium and magnesium sulfate attack: a physical and comparative analysis of mortars

2018 ◽  
Vol 11 (5) ◽  
pp. 1053-1075 ◽  
Author(s):  
D. J. de SOUZA ◽  
M. H. F. MEDEIROS ◽  
J. HOPPE FILHO

Abstract Sulfate attack is a term used to describe a series of chemical reactions between sulfate ions and hydrated compounds of the hardened cement paste. Thus, the chemical composition of the binders used is important for the durability of the structure against this aggressive agent. The objective of the present research is to evaluate the influence of sodium and magnesium sulfates on physical properties (linear expansion, flexure tensile strength, and compressive strength) of mortars composed by SR cement (CP V - ARI RS), as commercially sold in Brazil. The results indicate that SR cement complies the requirements established by Brazilian standards, as to chemical composition and resistance to sodium sulfate. However, for magnesium sulfate, SR cement was harmful to mortars mainly in mechanical.

2020 ◽  
Vol 53 (6) ◽  
Author(s):  
Fan Wu ◽  
Qingliang Yu ◽  
Changwu Liu ◽  
H. J. H. Brouwers ◽  
Linfeng Wang ◽  
...  

AbstractThe heat-treated apricot shell can be utilized as coarse aggregates for producing sustainable bio-based lightweight concrete with good compressive strength but poor tensile strength. In order to improve the tensile properties of apricot shell concrete (ASC), the effects of polypropylene (PP) fibre, glass (G) fibre and basalt (B) fibre at various volume fractions (Vf) (0.25%, 0.5% and 0.75%) on the performance of ASC were investigated. The results indicated that the fibre type had no significant effect on the physical properties of ASC such as slump, density, water absorption and permeable porosity. However, the slump of ASC decreases with an increase in fibre content. The B fibre has a better improvement in mechanical properties than the PP fibre and G fibre thanks to the better elastic modulus and tensile strength. When the Vf was 0.5%, the compressive strength, splitting tensile strength, flexural strength and modulus of elasticity of ASC reinforced with B fibre were increased by 16.7%, 29.1%, 29.2%, and 18.1%, respectively, compared to ASC without any fibres. The magnesium sulfate attack results showed that the incorporation of the B fibre decreased the mass loss and compressive strength of ASC exposed to a MgSO4 solution for 6 months because the fibre arrested the microcracks caused by the expansive stress. It is concluded that the mechanical properties of bio-based ASC and its resistance to magnesium sulfate attack can be significantly improved by incorporating 0.5% B fibre.


2020 ◽  
Vol 13 (3) ◽  
pp. 644-655 ◽  
Author(s):  
D. J. DE SOUZA ◽  
M. H. F. MEDEIROS ◽  
J. HOPPE FILHO

Abstract Sulfate attack is a term used to describe a series of chemical reactions between sulfate ions and hydrated compounds of the hardened cement paste. The present study aims to evaluate the physical (linear expansion, flexural and compressive strength) and mineralogical properties (X-ray diffraction) of three different mortar compositions (Portland Cement CPV-ARI with limestone filler and, with a quartz filler, in both cases with 10% replacement of the cement by weight) against sodium and magnesium sulfate attack (concentration of SO4 2- equal to 0.7 molar). The data collected indicate that the replacing the cement by the two fillers generate different results, the quartz filler presented a mitigating behaviour towards the sulfate, and the limestone filler was harmful to Portland cement mortars, in both physical and chemical characteristics.


Author(s):  
Diego Jesus de Souza ◽  
Marcelo Henrique Farias de Medeiros ◽  
Juarez Hoppe Filho

ABSTRACT: Sulfate attack is a term used to describe a series of chemical reactions between sulfate ions and hydrated compounds of the hardened cement paste. The present study aims to evaluate the physical (linear expansion, flexural and compressive strength) and mineralogical properties (X-ray diffraction) of three different mortar compositions (Portland Cement CPV-ARI containing silica fume and rice husk ash, in both cases with 10% replacement of the cement by weight) against sodium and magnesium sulfate attack (concentration of SO42- equal to 0.7 molar). The data collected indicate that the replacing the cement by the two siliceous supplementary cementitious materials (SCMs) generate similar results, both SCMs were able to mitigate the effects of the sodium sulfate attack in both physical and chemical characteristics, however, both materials increase the deterioration (i.e. compressive strength) when exposed to MgSO4 solution.


2021 ◽  
Vol 2109 (1) ◽  
pp. 012019
Author(s):  
Xuelian Yuan ◽  
Jie Hu

Abstract Through using cube resisting compression test, fracture properties and micro-structure, the mechanical properties of high volume ground slag concrete under low temperature are studied in this paper. The results show that low temperature can improve the compressive strength of high volume ground slag concrete. And strength increased with the decreased of temperature. Low temperature can also improve the fracture energy and fracture toughness. Not only can ground slag reduce the content of calcium hydroxide in hardened cement paste, but ground slag can improve the compactness of hardened cement paste, reduce porosity and improve the strength of the interface.


1984 ◽  
Vol 42 ◽  
Author(s):  
Huang Yiun-Yuan ◽  
Ding Wei ◽  
Lu Ping

AbstractThe pore-structure strongly influences the carpressive strength of hardened cement paste (hcp) and other porous materials, as well as other mechanical properties. The simplest but most currently used expression representing the relationship between the pore-structure and compressive strength is fram Balshin: σ = σ0 (l-P)A, in which only the total porosity P is involved as a single parameter and σ0 and A are empirical constants. The influence of pore size distribution and pore shapes etc. are not considered.The authors introduce second parameter w - the factor of relative specific surface area of the pores other than the total porosity P into consideration and a new expression is proposed:σc=K11-p/1+2p(K2(1-p))K3w+K4 all the constants K1 - K4 can be determined experimentally. By using of this expression the new information relating the influence of pore-structure on the caopressive strength of hcp can be predicted.


Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1336 ◽  
Author(s):  
Weifeng Chen ◽  
Bei Huang ◽  
Yuexue Yuan ◽  
Min Deng

Damage to concrete structures with gypsum-contaminated aggregate occurs frequently. Aggregates in much of the southern part of China are contaminated with gypsum. Therefore, in this study, the effects of using different quantities of gypsum-contaminated aggregate on the expansion and compressive strength of concrete were investigated over a period of one year. Two groups of concrete were designed with the gypsum-contaminated aggregate containing different parts of fine and coarse aggregate, respectively. The SO3 contents were 0%, 0.5%, 1%, 1.5%, 3%, 5%, and 7% by weight of aggregate. X-ray diffraction (XRD), thermogravimetry (TG), and differential scanning calorimetry (DSC) were used to analyze the change in mineral composition over time. The microstructure was also studied by scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The results showed that significant expansion and great loss in compressive strength did not occur in concrete if the content of SO3 lay below 1.5% and 3% in fine and coarse aggregates, respectively. The concentration of sulfate ions in concrete was not enough to form new a phase of gypsum. During the process of internal sulfate attack, the content of gypsum decreased and the content of ettringite increased. Ettringite was the main reason for the expansion damage of concrete. Additionally, the fracture mode of internal sulfate attack on concrete was the crack extension from gypsum to paste; finally, the aggregate separated from the paste.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Tao Long ◽  
Qingyuan Wang ◽  
Zhongwei Guan ◽  
Yu Chen ◽  
Xiaoshuang Shi

Fly ash geopolymer concrete (FAGC) and ordinary Portland cement concrete (OPCC) specimens were immersed in 5% MgSO4solution undergoing 32 wetting-drying and heating-cooling cycles. Their compressive behavior was investigated after every 8 cycles. Several microstructure analysis techniques were applied on the samples to identify the materials formed due to magnesium sulfate attack, including XRD, FTIR, SEM, and EDS. Experimental results elucidated that the compressive strength loss ratio in the heating group of FAGC was 12.7%, while that of OPCC was 17.8%, which means that FAGC had better magnesium sulfate resistance than OPCC. The compressive strength loss of OPCC was due to the formation of gypsum under the magnesium sulfate attack exposed to wetting-drying and heating-cooling cycles. The deterioration mechanisms of FAGC against MgSO4solution were discovered to be that sodium aluminum silicate hydrate (N-A-S-H) gels reacted with MgSO4, leading to the creation of low strength magnesium aluminum silicate hydrate (M-A-S-H) gels.


2011 ◽  
Vol 250-253 ◽  
pp. 182-187 ◽  
Author(s):  
Wei Juan Guo ◽  
Gao Xiang Du ◽  
Qiang Xue ◽  
Jing Hui Liao

The compressive strength of ultrafine white cement samples at three ages: 3, 7 and 28 days and micro appearance of hydrates were tested. The influence of the usage of superplasticizers on the compressive strength of ultrafine white cement paste and hydrates were investigated. The results indicated that the 28d compressive strength of ultrafine white cement with 3% naphthalene based superplasticizers added was 92.9 MPa, 22.9% of that of pure ultrafine white cements (75.6 MPa). The addition of superplasticizers was beneficial to the density of white cement paste. A large number of hydrates (AFt, C-H-S, and so on) were generated in the capillary pores, which would improve the structure of capillary pores of hardened cement paste, increase the density and strength.


Sign in / Sign up

Export Citation Format

Share Document