scholarly journals Use of recycled aggregates from civil construction in self-compacting mortar

Author(s):  
Fernanda Rodrigues Santos Valle ◽  
Paulo Cesar Gonçalves ◽  
Maria Gabriela A. Ranieri ◽  
Mirian de Lourdes Noronha Motta Melo ◽  
Valquíria Claret dos Santos

abstract: The utilization of wastes from demolition in civil construction in self compacting concrete (SCM) has the potential to reduce both the environmental impact and financial cost. In this context, this article aims to verify the behavior of the incorporation of recycled aggregates of civil construction in the mix designs of self-compacting mortar (SCM) in replacing cement, presenting as an interesting alternative to natural raw materials. This study used the EMMA® software to optimize the choice of percentages of fine recycled aggregates when replacing cement. The proportions chosen were 0%, 5%, 15%, and 25%, through the analysis of the granular packing curve of the respective mix designs. The proportion of 0% has in its composition cement, metakaolin, sand, superplasticizer (SP) and water. The parameters obtained, through tests in the fresh state of the mini-slump and mini-funnel V, certified the samples as SCM. The compressive strength and flexural tensile strength tests in the hardened state demonstrated a reduction in mechanical properties of the material with cement replacement. It is concluded that the waste used brick and ceramic can be added in replacement to the cement in SCM without significant loss of properties in the fresh and hardened state.

“Fiber Reinforced Self Compacting Concrete” (FRSCC) is composed of cement, different sizes of coarse and fine aggregates, which integrate with fiber. In this current investigation, M40 grade Self Compacting Concrete reinforced with glass fibers has been developed using the Nan Su method. Fresh state and hardened state properties of Glass Fiber Reinforced Self Compaction Concrete are studied for glass fibers of different aspect ratio (875, 1285 & 1714) and percentage of volume fraction (0, 0.25, 0.5, 0.75 & 1). From the investigation carried out it is found that incorporation of glass fibers of aspect ratio 1285 and percentage of volume fraction 0.5 to SCC attains better compressive and flexural strength compared to other mixtures and also incorporation of glass fibers of aspect ratio 1285 and percentage of volume fraction 0.75 to SCC attains better split tensile strength compared to other mixtures.


2019 ◽  
Vol 43 (6) ◽  
pp. 545-572
Author(s):  
Elhem Ghorbel ◽  
George Wardeh ◽  
Hector Gomart ◽  
Pierre Matar

The present research investigates the feasibility of manufacturing masonry mortars with recycled sand. The primary aim is to study the effect of fine recycled aggregates on fresh and hardened states with properties. Two series of mortars were designed by substituting natural sand with recycled sand, with variable sand replacement ratios ranging from 0% to 100%. One series, named variable workability series, has variable workability with constant water to cement ratio ( W/C), while the other series, called constant workability series, has a constant workability with variable W/C. The density, air content, and slump of mortars in fresh state were measured with a special attention devoted to the effect of pre-saturation of recycled sand on the slump. In the hardened state, the microstructure was studied by means of water accessible porosity test and mercury intrusion porosimetry test. Flexural and compressive strength as well as the dynamic modulus of elasticity were also examined and the correlations between these properties and the microstructure have been established. It was found that the properties of mortars with recycled sand are lower than those obtained for the natural sand mortar (−20% for variable workability series and −45% for constant workability series at the age of 28 days). For the series with variable workability, mechanical properties decrease to a step starting from 30% replacement ratio, while linearly decrease for the mortars with constant workability. The difference between the two series lies in the difference in total porosities and the pore size distribution.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Kashif Ali Khan ◽  
Hassan Nasir ◽  
Muhammad Alam ◽  
Sajjad Wali Khan ◽  
Izhar Ahmad ◽  
...  

Advancement in the construction industry causes decline in the availability of natural resources, and this decline can be overcome by utilization of the available raw materials. This study is focused on the combined effects of ethylene vinyl acetate (EVA) and ladle furnace slag (LFS) on fresh and hardened characteristics of self-compacting concrete (SCC) by replacing some fraction of cement and sand. The characteristics of SCC in its fresh state are investigated by workability, while hardened characteristics are investigated by elastic modulus and compressive, tensile, and flexural strength. The findings showed that the workability is enhanced by the incorporation of EVA, while decreased with LFS. Furthermore, all the strength properties were enhanced at all the replacement levels of EVA and LFS except for the splitting tensile strength. The utmost gain in elastic modulus and compressive, tensile, and flexural strength was up to 18, 20, 10, and 15% more by increasing the dosage of LFS while keeping EVA constant.


2013 ◽  
Vol 687 ◽  
pp. 204-212 ◽  
Author(s):  
Ioana Ion ◽  
José Barroso Aguiar ◽  
Nicolae Angelescu ◽  
Darius Stanciu

It was carried out a study on the properties of polymer modified concrete (PCM) in fresh and hardened state. It was used three types of polymers: epoxy resins, polyurethane and methylcellulose in different percentages and different water cement ratio. The main objectives was to improve workability and rheological behavior of these mixtures in fresh state and mechanical strength tests on hard concrete. Has been investigated the polymer influence on compression strength and flexural strength and analyzing the time evolution of these strengths and participation of polymer in the microstructure formation.


2018 ◽  
Vol 162 ◽  
pp. 02023 ◽  
Author(s):  
Suhair Al-Hubboubi ◽  
Tareq al-Attar ◽  
Haider Al-Badry ◽  
Samir Abood ◽  
Rawaa Mohammed ◽  
...  

Internal curing agent by using super-absorbent polymer was present in this study, its effect on the properties of self-compacting concrete was evaluated .The SAP content in the concrete mix was 0.5 % by weight of cement. Three procedures for curing were adopted; curing in water, curing in water and air and curing in polyethylene sealed bags. Fresh concrete tests conducted to assess the self-compactability of the produced concrete. Moreover, compressive and splitting strength tests were carried out. The testing program had been extended to the age of 90 days.The use of super-absorbent polymer did not affect the fresh state characteristics of the studied SCC and achieved an increase in both compressive and tensile strengths as compared to the reference concrete mix.


2019 ◽  
Vol 8 (3) ◽  
pp. 5140-5146

All over the world, wide amount of demolishing waste is being generated posing lot of environmental issues. To address these issues, Self-Compacting Concrete (SCC) was made by replacing cement partially with mineral admixtures and NCA with RCA. The fresh and hardened properties for M30 grade of SCC made with NCA and RCA were evaluated. Cement in SCC was recouped partly with 30% Fly Ash, 20% GGBS by weight of the cement. Polypropylene fibers at 0.1% were added to study their influencing nature on the hardened state and fresh state properties of the SCC mix. Four sequences of SCC mixes of M30 were prepared by substituting the NCA with RCA at 25%, 50%, 75% and 100% derived from the dismantled concrete waste of M30 parent grade. SCC produced with the RCA up to 50% and with 0.1% addition of Fibers demonstrated comparable performance as that of SCC with NCA.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4758
Author(s):  
Qaisar Munir ◽  
Riku Peltonen ◽  
Timo Kärki

The objective of this investigation is to study the printing parameter requirements for sustainable 3D printable geopolymer materials. Side streams of the paper, mining, and construction industries were applied as geopolymer raw materials. The effect of printing parameters in terms of buildability, mixability, extrudability, curing, Al-to-Si ratio, and waste materials utilisation on the fresh and hardened state of the materials was studied. The material performance of a fresh geopolymer was measured using setting time and shape stability tests. Standardised test techniques were applied in the testing of the hardened material properties of compressive and flexural strength. The majority of developed suitable 3D printable geopolymers comprised 56–58% recycled material. Heating was used to improve the buildability and setting of the material significantly. A reactive recyclable material content of greater than 20% caused the strength and material workability to decrease. A curing time of 7–28 days increased the compressive strength but decreased the flexural strength. The layers in the test samples exhibited decreased and increased strength, respectively, in compressive and flexural strength tests. Geopolymer development was found to be a compromise between different strength values and recyclable material contents. By focusing on specialised and complex-shape products, 3D printing of geopolymers can compete with traditional manufacturing in limited markets.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 264
Author(s):  
G J. Prasannaa Venkatesh ◽  
S S.Vivek ◽  
G Dhinakaran

Self-compacting concrete (SCC) is the flowable concrete which tends to fill the formwork under its weight without external compaction. In the present research, 9 different SCC mixes in binary blend along with control SCC and conventional vibrated concrete (CVC) mixes were developed. In binary combination, cement was partially replaced by SF from 7 to 21%, MK from 10 to 30% and GGBS from 20 to 60%. For the above 9 combinations of SCC mixes, the basic rheological properties test namely slump flow and T500 were carried out in the fresh state of SCC. The flowability was achieved using Superplasticizer and viscosity modifying admixture (VMA), added by the percentage of the weight of cement. In hardened state, the compressive strength of the cube specimens and the split tensile strength of the cylinder specimens were carried out.  


2021 ◽  
Vol 872 ◽  
pp. 79-84
Author(s):  
Koran Salihi ◽  
Khaleel H. Younis

To develop a sustainable concrete and to minimize the depletion of the natural resources, an attempt was made to develop sustainable concrete mixtures benefiting from the geopolymer technology and the use of recycled aggregate in self-compacting geopolymer concrete (SCGC). This study aim to examine the effects of sodium hydroxide (SH) molarity and sodium silicate (Na2SiO3)/ sodium hydroxide (SS/SH) ration the fresh properties of SCGC mixtures containing recycled coarse aggregates (RCA) Mixes were prepared with three different molarity (8M, 10M and 12M) of) and four SS/SH ratios (1.5, 2.0, 2.5 and 3.0). Six mixes were examined in this study. The results were compared with the EFNARC limits for self-compacting concrete (SCC). It was found that the SS/SH ratio and the molarity of SH affect the fresh properties of (SCGC). However, the results showed that, SCGC mixtures containing RCA can be developed and satisfy the requirements of EFNARC for fresh state of SCC.


2021 ◽  
Vol 17 (2) ◽  
pp. 47-69
Author(s):  
Anderson Buss Woeffel ◽  
Matheus Laureth Batista

The macro sector of the civil construction industry is a major consumer of natural resources and it generates impacts, identified as social, environmental or economic, and it is necessary to develop studies that aim to rationalize this raw materials consumption and reduce the impacts generated. Since some resources used in the sector are finite, this work’s main objective is to make the concrete more ecological by replacing part of the fine aggregate of its composition for granulated slag from the blast furnace, reducing the need for sand extraction. For this study, tests were carried out with the co-product and with the fine aggregate, evaluating the properties of the concrete in the fresh and hardened states in three mixture types, the first being a reference, the second with 30% replacement and the third with 60% replacement of fine aggregate with slag. Based on the results obtained, it is noted that the granulated blast furnace slag has more similar characteristics to the sand’s; in the fresh state, the concrete showed a similar result in the three mix types; in the hardened state, it was observed that the performance of the concrete in axial compression was satisfactory; while in flexion traction the two proposed mixtures with substitution presented an unsatisfactory result.


Sign in / Sign up

Export Citation Format

Share Document