scholarly journals Real-Time Route Search by Locations

2020 ◽  
Vol 34 (01) ◽  
pp. 574-581
Author(s):  
Lisi Chen ◽  
Shuo Shang ◽  
Tao Guo

With the proliferation of GPS-based data (e.g., routes and trajectories), it is of great importance to enable the functionality of real-time route search and recommendations. We define and study a novel Continuous Route-Search-by-Location (C-RSL) problem to enable real-time route search by locations for a large number of users over route data streams. Given a set of C-RSL queries where each query q contains a set of places q.O to visit and a threshold q.θ, we continuously feed each query q with routes that has similarity to q.O no less than q.θ. We also extend our proposal to support top-k C-RSL problem where each query continuously maintains k most similar routes. The C-RSL problem targets a variety of applications, including real-time route planning, ridesharing, and other location-based services that have real-time demand. To enable efficient route matching on a large number of C-RSL queries, we develop novel parallel route matching algorithms with good time complexity. Extensive experiments with real data offer insight into the performance of our algorithms, indicating that our proposal is capable of achieving high efficiency and scalability.

2017 ◽  
Vol 8 (2) ◽  
pp. 870-875
Author(s):  
M. J. Zhang ◽  
R. R. Zhang ◽  
G. Xu ◽  
L. P. Chen

Problems in the process of manned agricultural aerial spraying, such as heavy workload in route planning, overlaps or omissions in spraying seriously reduce the efficiency of spraying and utilization rate of pesticides. This paper presents the design and development of a navigation system for manned agricultural aerial spraying based on an industrial tablet PC. This system provides three key functions: route planning, spraying navigation and real-time evaluation of spraying quality. The test and application results show that this system has high efficiency in route planning, and the average coverage rate of spraying could reach as high as 96%. Its application effect is remarkable, and as a result, this system can meet the demand of manned agricultural aerial spraying in route planning and navigation.


Author(s):  
Jiaqi Song ◽  
Jing Li ◽  
Di Wu ◽  
Guangye Li ◽  
Jiaxin Zhang ◽  
...  

Power line corridor inspection plays a vital role in power system safe operation, traditional human inspection’s low efficiency makes the novel inspection method requiring high precision and high efficiency. Combined with the current deep learning target detection algorithm based on high accuracy and strong real-time performance, this paper proposes a YOLOV4-Tiny based drone real-time power line inspection method. The 5G and edge computing technology are combined properly forming a complete edge computing architecture. The UAV is treated as an edge device with a YOLOV4-Tiny deep- learning-based object detection model and AI chip on board. Extensive experiments on real data demonstrate the 5G and Edge computing architecture could satisfy the demands of real-time power inspection, and the intelligence of the whole inspection improved significantly.


Author(s):  
Lisi Chen ◽  
Shuo Shang ◽  
Shanshan Feng ◽  
Panos Kalnis

We study the problem of subtrajectory alignment over massive-scale trajectory data. Given a collection of trajectories, a subtrajectory alignment query returns new targeted trajectories by splitting and aligning existing trajectories. The resulting functionality targets a range of applications, including trajectory data analysis, route planning and recommendation, ridesharing, and general location-based services. To enable efficient and effective subtrajectory alignment computation, we propose a novel search algorithm and filtering techniques that enable the use of the parallel processing capabilities of modern processors. Experiments with large trajectory datasets are conducted for evaluating the performance of our proposal. The results show that our solution to the subtrajectory alignment problem can generate high-quality results and are capable of achieving high efficiency and scalability.


Author(s):  
Yang Lu ◽  
Yiu-ming Cheung ◽  
Yuan Yan Tang

Concept drifts occurring in data streams will jeopardize the accuracy and stability of the online learning process. If the data stream is imbalanced, it will be even more challenging to detect and cure the concept drift. In the literature, these two problems have been intensively addressed separately, but have yet to be well studied when they occur together. In this paper, we propose a chunk-based incremental learning method called Dynamic Weighted Majority for Imbalance Learning (DWMIL) to deal with the data streams with concept drift and class imbalance problem. DWMIL utilizes an ensemble framework by dynamically weighting the base classifiers according to their performance on the current data chunk. Compared with the existing methods, its merits are four-fold: (1) it can keep stable for non-drifted streams and quickly adapt to the new concept; (2) it is totally incremental, i.e. no previous data needs to be stored; (3) it keeps a limited number of classifiers to ensure high efficiency; and (4) it is simple and needs only one thresholding parameter. Experiments on both synthetic and real data sets with concept drift show that DWMIL performs better than the state-of-the-art competitors, with less computational cost.


Author(s):  
LAKSHMI PRANEETHA

Now-a-days data streams or information streams are gigantic and quick changing. The usage of information streams can fluctuate from basic logical, scientific applications to vital business and money related ones. The useful information is abstracted from the stream and represented in the form of micro-clusters in the online phase. In offline phase micro-clusters are merged to form the macro clusters. DBSTREAM technique captures the density between micro-clusters by means of a shared density graph in the online phase. The density data in this graph is then used in reclustering for improving the formation of clusters but DBSTREAM takes more time in handling the corrupted data points In this paper an early pruning algorithm is used before pre-processing of information and a bloom filter is used for recognizing the corrupted information. Our experiments on real time datasets shows that using this approach improves the efficiency of macro-clusters by 90% and increases the generation of more number of micro-clusters within in a short time.


2021 ◽  
Vol 40 (3) ◽  
pp. 1-12
Author(s):  
Hao Zhang ◽  
Yuxiao Zhou ◽  
Yifei Tian ◽  
Jun-Hai Yong ◽  
Feng Xu

Reconstructing hand-object interactions is a challenging task due to strong occlusions and complex motions. This article proposes a real-time system that uses a single depth stream to simultaneously reconstruct hand poses, object shape, and rigid/non-rigid motions. To achieve this, we first train a joint learning network to segment the hand and object in a depth image, and to predict the 3D keypoints of the hand. With most layers shared by the two tasks, computation cost is saved for the real-time performance. A hybrid dataset is constructed here to train the network with real data (to learn real-world distributions) and synthetic data (to cover variations of objects, motions, and viewpoints). Next, the depth of the two targets and the keypoints are used in a uniform optimization to reconstruct the interacting motions. Benefitting from a novel tangential contact constraint, the system not only solves the remaining ambiguities but also keeps the real-time performance. Experiments show that our system handles different hand and object shapes, various interactive motions, and moving cameras.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1924
Author(s):  
Patrick Seeling ◽  
Martin Reisslein ◽  
Frank H. P. Fitzek

The Tactile Internet will require ultra-low latencies for combining machines and humans in systems where humans are in the control loop. Real-time and perceptual coding in these systems commonly require content-specific approaches. We present a generic approach based on deliberately reduced number accuracy and evaluate the trade-off between savings achieved and errors introduced with real-world data for kinesthetic movement and tele-surgery. Our combination of bitplane-level accuracy adaptability with perceptual threshold-based limits allows for great flexibility in broad application scenarios. Combining the attainable savings with the relatively small introduced errors enables the optimal selection of a working point for the method in actual implementations.


2020 ◽  
Vol 12 (11) ◽  
pp. 1747 ◽  
Author(s):  
Yin Zhang ◽  
Qiping Zhang ◽  
Yongchao Zhang ◽  
Jifang Pei ◽  
Yulin Huang ◽  
...  

Deconvolution methods can be used to improve the azimuth resolution in airborne radar imaging. Due to the sparsity of targets in airborne radar imaging, an L 1 regularization problem usually needs to be solved. Recently, the Split Bregman algorithm (SBA) has been widely used to solve L 1 regularization problems. However, due to the high computational complexity of matrix inversion, the efficiency of the traditional SBA is low, which seriously restricts its real-time performance in airborne radar imaging. To overcome this disadvantage, a fast split Bregman algorithm (FSBA) is proposed in this paper to achieve real-time imaging with an airborne radar. Firstly, under the regularization framework, the problem of azimuth resolution improvement can be converted into an L 1 regularization problem. Then, the L 1 regularization problem can be solved with the proposed FSBA. By utilizing the low displacement rank features of Toeplitz matrix, the proposed FSBA is able to realize fast matrix inversion by using a Gohberg–Semencul (GS) representation. Through simulated and real data processing experiments, we prove that the proposed FSBA significantly improves the resolution, compared with the Wiener filtering (WF), truncated singular value decomposition (TSVD), Tikhonov regularization (REGU), Richardson–Lucy (RL), iterative adaptive approach (IAA) algorithms. The computational advantage of FSBA increases with the increase of echo dimension. Its computational efficiency is 51 times and 77 times of the traditional SBA, respectively, for echoes with dimensions of 218 × 400 and 400 × 400 , optimizing both the image quality and computing time. In addition, for a specific hardware platform, the proposed FSBA can process echo of greater dimensions than traditional SBA. Furthermore, the proposed FSBA causes little performance degradation, when compared with the traditional SBA.


Sign in / Sign up

Export Citation Format

Share Document