scholarly journals Partial Label Learning with Batch Label Correction

2020 ◽  
Vol 34 (04) ◽  
pp. 6575-6582
Author(s):  
Yan Yan ◽  
Yuhong Guo

Partial label (PL) learning tackles the problem where each training instance is associated with a set of candidate labels, among which only one is the true label. In this paper, we propose a simple but effective batch-based partial label learning algorithm named PL-BLC, which tackles the partial label learning problem with batch-wise label correction (BLC). PL-BLC dynamically corrects the label confidence matrix of each training batch based on the current prediction network, and adopts a MixUp data augmentation scheme to enhance the underlying true labels against the redundant noisy labels. In addition, it introduces a teacher model through a consistency cost to ensure the stability of the batch-based prediction network update. Extensive experiments are conducted on synthesized and real-world partial label learning datasets, while the proposed approach demonstrates the state-of-the-art performance for partial label learning.

Author(s):  
Yan Yan ◽  
Yuhong Guo

Partial label (PL) learning tackles the problem where each training instance is associated with a set of candidate labels that include both the true label and some irrelevant noise labels. In this paper, we propose a novel multi-level generative model for partial label learning (MGPLL), which tackles the PL problem by learning both a label level adversarial generator and a feature level adversarial generator under a bi-directional mapping framework between the label vectors and the data samples. MGPLL uses a conditional noise label generation network to model the non-random noise labels and perform label denoising, and uses a multi-class predictor to map the training instances to the denoised label vectors, while a conditional data feature generator is used to form an inverse mapping from the denoised label vectors to data samples. Both the noise label generator and the data feature generator are learned in an adversarial manner to match the observed candidate labels and data features respectively. We conduct extensive experiments on both synthesized and real-world partial label datasets. The proposed approach demonstrates the state-of-the-art performance for partial label learning.


Author(s):  
Cong Fei ◽  
Bin Wang ◽  
Yuzheng Zhuang ◽  
Zongzhang Zhang ◽  
Jianye Hao ◽  
...  

Generative adversarial imitation learning (GAIL) has shown promising results by taking advantage of generative adversarial nets, especially in the field of robot learning. However, the requirement of isolated single modal demonstrations limits the scalability of the approach to real world scenarios such as autonomous vehicles' demand for a proper understanding of human drivers' behavior. In this paper, we propose a novel multi-modal GAIL framework, named Triple-GAIL, that is able to learn skill selection and imitation jointly from both expert demonstrations and continuously generated experiences with data augmentation purpose by introducing an auxiliary selector. We provide theoretical guarantees on the convergence to optima for both of the generator and the selector respectively. Experiments on real driver trajectories and real-time strategy game datasets demonstrate that Triple-GAIL can better fit multi-modal behaviors close to the demonstrators and outperforms state-of-the-art methods.


Author(s):  
Yun-Peng Liu ◽  
Ning Xu ◽  
Yu Zhang ◽  
Xin Geng

The performances of deep neural networks (DNNs) crucially rely on the quality of labeling. In some situations, labels are easily corrupted, and therefore some labels become noisy labels. Thus, designing algorithms that deal with noisy labels is of great importance for learning robust DNNs. However, it is difficult to distinguish between clean labels and noisy labels, which becomes the bottleneck of many methods. To address the problem, this paper proposes a novel method named Label Distribution based Confidence Estimation (LDCE). LDCE estimates the confidence of the observed labels based on label distribution. Then, the boundary between clean labels and noisy labels becomes clear according to confidence scores. To verify the effectiveness of the method, LDCE is combined with the existing learning algorithm to train robust DNNs. Experiments on both synthetic and real-world datasets substantiate the superiority of the proposed algorithm against state-of-the-art methods.


2018 ◽  
Vol 8 (12) ◽  
pp. 2512 ◽  
Author(s):  
Ghouthi Boukli Hacene ◽  
Vincent Gripon ◽  
Nicolas Farrugia ◽  
Matthieu Arzel ◽  
Michel Jezequel

Deep learning-based methods have reached state of the art performances, relying on a large quantity of available data and computational power. Such methods still remain highly inappropriate when facing a major open machine learning problem, which consists of learning incrementally new classes and examples over time. Combining the outstanding performances of Deep Neural Networks (DNNs) with the flexibility of incremental learning techniques is a promising venue of research. In this contribution, we introduce Transfer Incremental Learning using Data Augmentation (TILDA). TILDA is based on pre-trained DNNs as feature extractors, robust selection of feature vectors in subspaces using a nearest-class-mean based technique, majority votes and data augmentation at both the training and the prediction stages. Experiments on challenging vision datasets demonstrate the ability of the proposed method for low complexity incremental learning, while achieving significantly better accuracy than existing incremental counterparts.


Author(s):  
Lei Feng ◽  
Bo An

Partial label learning deals with the problem where each training instance is assigned a set of candidate labels, only one of which is correct. This paper provides the first attempt to leverage the idea of self-training for dealing with partially labeled examples. Specifically, we propose a unified formulation with proper constraints to train the desired model and perform pseudo-labeling jointly. For pseudo-labeling, unlike traditional self-training that manually differentiates the ground-truth label with enough high confidence, we introduce the maximum infinity norm regularization on the modeling outputs to automatically achieve this consideratum, which results in a convex-concave optimization problem. We show that optimizing this convex-concave problem is equivalent to solving a set of quadratic programming (QP) problems. By proposing an upper-bound surrogate objective function, we turn to solving only one QP problem for improving the optimization efficiency. Extensive experiments on synthesized and real-world datasets demonstrate that the proposed approach significantly outperforms the state-of-the-art partial label learning approaches.


Author(s):  
Jie Wen ◽  
Zheng Zhang ◽  
Yong Xu ◽  
Bob Zhang ◽  
Lunke Fei ◽  
...  

Multi-view clustering aims to partition data collected from diverse sources based on the assumption that all views are complete. However, such prior assumption is hardly satisfied in many real-world applications, resulting in the incomplete multi-view learning problem. The existing attempts on this problem still have the following limitations: 1) the underlying semantic information of the missing views is commonly ignored; 2) The local structure of data is not well explored; 3) The importance of different views is not effectively evaluated. To address these issues, this paper proposes a Unified Embedding Alignment Framework (UEAF) for robust incomplete multi-view clustering. In particular, a locality-preserved reconstruction term is introduced to infer the missing views such that all views can be naturally aligned. A consensus graph is adaptively learned and embedded via the reverse graph regularization to guarantee the common local structure of multiple views and in turn can further align the incomplete views and inferred views. Moreover, an adaptive weighting strategy is designed to capture the importance of different views. Extensive experimental results show that the proposed method can significantly improve the clustering performance in comparison with some state-of-the-art methods.


Author(s):  
Li'ang Yin ◽  
Yunfei Liu ◽  
Weinan Zhang ◽  
Yong Yu

Aggregating crowd wisdom infers true labels for objects, from multiple noisy labels provided by various sources. Besides labels from sources, side information such as object features is also introduced to achieve higher inference accuracy. Usually, the learning-from-crowds framework is adopted. However, the framework considers each object in isolation and does not make full use of object features to overcome label noise. In this paper, we propose a clustering-based label-aware autoencoder (CLA) to alleviate label noise. CLA utilizes clusters to gather objects with similar features and exploits clustering to infer true labels, by constructing a novel deep generative process to simultaneously generate object features and source labels from clusters. For model inference, CLA extends the framework of variational autoencoders and utilizes maximizing a posteriori (MAP) estimation, which prevents the model from overfitting and trivial solutions. Experiments on real-world tasks demonstrate the significant improvement of CLA compared with the state-of-the-art aggregation algorithms.


Author(s):  
Florian Wenzel ◽  
Théo Galy-Fajou ◽  
Christan Donner ◽  
Marius Kloft ◽  
Manfred Opper

We propose a scalable stochastic variational approach to GP classification building on Pólya-Gamma data augmentation and inducing points. Unlike former approaches, we obtain closed-form updates based on natural gradients that lead to efficient optimization. We evaluate the algorithm on real-world datasets containing up to 11 million data points and demonstrate that it is up to two orders of magnitude faster than the state-of-the-art while being competitive in terms of prediction performance.


Author(s):  
Pengyu Zhao ◽  
Tianxiao Shui ◽  
Yuanxing Zhang ◽  
Kecheng Xiao ◽  
Kaigui Bian

Recently, sequential recommendation has become a significant demand for many real-world applications, where the recommended items would be displayed to users one after another and the order of the displays influences the satisfaction of users. An extensive number of models have been developed for sequential recommendation by recommending the next items with the highest scores based on the user histories while few efforts have been made on identifying the transition dependency and behavior continuity in the recommended sequences. In this paper, we introduce the Adversarial Oracular Seq2seq learning for sequential Recommendation (AOS4Rec), which formulates the sequential recommendation as a seq2seq learning problem to portray time-varying interactions in the recommendation, and exploits the oracular learning and adversarial learning to enhance the recommendation quality. We examine the performance of AOS4Rec over RNN-based and Transformer-based recommender systems on two large datasets from real-world applications and make comparisons with state-of-the-art methods. Results indicate the accuracy and efficiency of AOS4Rec, and further analysis verifies that AOS4Rec has both robustness and practicability for real-world scenarios.


Author(s):  
Mengchen Liu ◽  
Liu Jiang ◽  
Junlin Liu ◽  
Xiting Wang ◽  
Jun Zhu ◽  
...  

Although several effective learning-from-crowd methods have been developed to infer correct labels from noisy crowdsourced labels, a method for post-processed expert validation is still needed. This paper introduces a semi-supervised learning algorithm that is capable of selecting the most informative instances and maximizing the influence of expert labels. Specifically, we have developed a complete uncertainty assessment to facilitate the selection of the most informative instances. The expert labels are then propagated to similar instances via regularized Bayesian inference. Experiments on both real-world and simulated datasets indicate that given a specific accuracy goal (e.g., 95%) our method reduces expert effort from 39% to 60% compared with the state-of-the-art method.


Sign in / Sign up

Export Citation Format

Share Document