scholarly journals End-to-End Argumentation Knowledge Graph Construction

2020 ◽  
Vol 34 (05) ◽  
pp. 7367-7374
Author(s):  
Khalid Al-Khatib ◽  
Yufang Hou ◽  
Henning Wachsmuth ◽  
Charles Jochim ◽  
Francesca Bonin ◽  
...  

This paper studies the end-to-end construction of an argumentation knowledge graph that is intended to support argument synthesis, argumentative question answering, or fake news detection, among others. The study is motivated by the proven effectiveness of knowledge graphs for interpretable and controllable text generation and exploratory search. Original in our work is that we propose a model of the knowledge encapsulated in arguments. Based on this model, we build a new corpus that comprises about 16k manual annotations of 4740 claims with instances of the model's elements, and we develop an end-to-end framework that automatically identifies all modeled types of instances. The results of experiments show the potential of the framework for building a web-based argumentation graph that is of high quality and large scale.

Author(s):  
Zhongyang Li ◽  
Xiao Ding ◽  
Ting Liu ◽  
J. Edward Hu ◽  
Benjamin Van Durme

We present a conditional text generation framework that posits sentential expressions of possible causes and effects. This framework depends on two novel resources we develop in the course of this work: a very large-scale collection of English sentences expressing causal patterns (CausalBank); and a refinement over previous work on constructing large lexical causal knowledge graphs (Cause Effect Graph). Further, we extend prior work in lexically-constrained decoding to support disjunctive positive constraints. Human assessment confirms that our approach gives high-quality and diverse outputs. Finally, we use CausalBank to perform continued training of an encoder supporting a recent state-of-the-art model for causal reasoning, leading to a 3-point improvement on the COPA challenge set, with no change in model architecture.


2021 ◽  
Author(s):  
Shengchen Jiang ◽  
Hongbin Wang ◽  
Xiang Hou

Abstract The existing methods ignore the adverse effect of knowledge graph incompleteness on knowledge graph embedding. In addition, the complexity and large-scale of knowledge information hinder knowledge graph embedding performance of the classic graph convolutional network. In this paper, we analyzed the structural characteristics of knowledge graph and the imbalance of knowledge information. Complex knowledge information requires that the model should have better learnability, rather than linearly weighted qualitative constraints, so the method of end-to-end relation-enhanced learnable graph self-attention network for knowledge graphs embedding is proposed. Firstly, we construct the relation-enhanced adjacency matrix to consider the incompleteness of the knowledge graph. Secondly, the graph self-attention network is employed to obtain the global encoding and relevance ranking of entity node information. Thirdly, we propose the concept of convolutional knowledge subgraph, it is constructed according to the entity relevance ranking. Finally, we improve the training effect of the convKB model by changing the construction of negative samples to obtain a better reliability score in the decoder. The experimental results based on the data sets FB15k-237 and WN18RR show that the proposed method facilitates more comprehensive representation of knowledge information than the existing methods, in terms of Hits@10 and MRR.


2018 ◽  
Vol 10 (9) ◽  
pp. 3245 ◽  
Author(s):  
Tianxing Wu ◽  
Guilin Qi ◽  
Cheng Li ◽  
Meng Wang

With the continuous development of intelligent technologies, knowledge graph, the backbone of artificial intelligence, has attracted much attention from both academic and industrial communities due to its powerful capability of knowledge representation and reasoning. In recent years, knowledge graph has been widely applied in different kinds of applications, such as semantic search, question answering, knowledge management and so on. Techniques for building Chinese knowledge graphs are also developing rapidly and different Chinese knowledge graphs have been constructed to support various applications. Under the background of the “One Belt One Road (OBOR)” initiative, cooperating with the countries along OBOR on studying knowledge graph techniques and applications will greatly promote the development of artificial intelligence. At the same time, the accumulated experience of China in developing knowledge graphs is also a good reference to develop non-English knowledge graphs. In this paper, we aim to introduce the techniques of constructing Chinese knowledge graphs and their applications, as well as analyse the impact of knowledge graph on OBOR. We first describe the background of OBOR, and then introduce the concept and development history of knowledge graph and typical Chinese knowledge graphs. Afterwards, we present the details of techniques for constructing Chinese knowledge graphs, and demonstrate several applications of Chinese knowledge graphs. Finally, we list some examples to explain the potential impacts of knowledge graph on OBOR.


2021 ◽  
Vol 47 (05) ◽  
Author(s):  
NGUYỄN CHÍ HIẾU

Knowledge Graphs are applied in many fields such as search engines, semantic analysis, and question answering in recent years. However, there are many obstacles for building knowledge graphs as methodologies, data and tools. This paper introduces a novel methodology to build knowledge graph from heterogeneous documents.  We use the methodologies of Natural Language Processing and deep learning to build this graph. The knowledge graph can use in Question answering systems and Information retrieval especially in Computing domain


Author(s):  
Anastasia Dimou

In this chapter, an overview of the state of the art on knowledge graph generation is provided, with focus on the two prevalent mapping languages: the W3C recommended R2RML and its generalisation RML. We look into details on their differences and explain how knowledge graphs, in the form of RDF graphs, can be generated with each one of the two mapping languages. Then we assess if the vocabulary terms were properly applied to the data and no violations occurred on their use, either using R2RML or RML to generate the desired knowledge graph.


2019 ◽  
Vol 4 (4) ◽  
pp. 323-335 ◽  
Author(s):  
Peihao Tong ◽  
Qifan Zhang ◽  
Junjie Yao

Abstract With the growing availability of different knowledge graphs in a variety of domains, question answering over knowledge graph (KG-QA) becomes a prevalent information retrieval approach. Current KG-QA methods usually resort to semantic parsing, search or neural matching models. However, they cannot well tackle increasingly long input questions and complex information needs. In this work, we propose a new KG-QA approach, leveraging the rich domain context in the knowledge graph. We incorporate the new approach with question and answer domain context descriptions. Specifically, for questions, we enrich them with users’ subsequent input questions within a session and expand the input question representation. For the candidate answers, we equip them with surrounding context structures, i.e., meta-paths within the targeting knowledge graph. On top of these, we design a cross-attention mechanism to improve the question and answer matching performance. An experimental study on real datasets verifies these improvements. The new approach is especially beneficial for specific knowledge graphs with complex questions.


Author(s):  
Ratish Puduppully ◽  
Li Dong ◽  
Mirella Lapata

Recent advances in data-to-text generation have led to the use of large-scale datasets and neural network models which are trained end-to-end, without explicitly modeling what to say and in what order. In this work, we present a neural network architecture which incorporates content selection and planning without sacrificing end-to-end training. We decompose the generation task into two stages. Given a corpus of data records (paired with descriptive documents), we first generate a content plan highlighting which information should be mentioned and in which order and then generate the document while taking the content plan into account. Automatic and human-based evaluation experiments show that our model1 outperforms strong baselines improving the state-of-the-art on the recently released RotoWIRE dataset.


2019 ◽  
Vol 1 (4) ◽  
pp. 333-349 ◽  
Author(s):  
Peilu Wang ◽  
Hao Jiang ◽  
Jingfang Xu ◽  
Qi Zhang

Knowledge graph (KG) has played an important role in enhancing the performance of many intelligent systems. In this paper, we introduce the solution of building a large-scale multi-source knowledge graph from scratch in Sogou Inc., including its architecture, technical implementation and applications. Unlike previous works that build knowledge graph with graph databases, we build the knowledge graph on top of SogouQdb, a distributed search engine developed by Sogou Web Search Department, which can be easily scaled to support petabytes of data. As a supplement to the search engine, we also introduce a series of models to support inference and graph based querying. Currently, the data of Sogou knowledge graph that are collected from 136 different websites and constantly updated consist of 54 million entities and over 600 million entity links. We also introduce three applications of knowledge graph in Sogou Inc.: entity detection and linking, knowledge based question answering and knowledge based dialog system. These applications have been used in Web search products to help user acquire information more efficiently.


2022 ◽  
Vol 12 (2) ◽  
pp. 715
Author(s):  
Luodi Xie ◽  
Huimin Huang ◽  
Qing Du

Knowledge graph (KG) embedding has been widely studied to obtain low-dimensional representations for entities and relations. It serves as the basis for downstream tasks, such as KG completion and relation extraction. Traditional KG embedding techniques usually represent entities/relations as vectors or tensors, mapping them in different semantic spaces and ignoring the uncertainties. The affinities between entities and relations are ambiguous when they are not embedded in the same latent spaces. In this paper, we incorporate a co-embedding model for KG embedding, which learns low-dimensional representations of both entities and relations in the same semantic space. To address the issue of neglecting uncertainty for KG components, we propose a variational auto-encoder that represents KG components as Gaussian distributions. In addition, compared with previous methods, our method has the advantages of high quality and interpretability. Our experimental results on several benchmark datasets demonstrate our model’s superiority over the state-of-the-art baselines.


Sign in / Sign up

Export Citation Format

Share Document