scholarly journals Popular Ensemble Methods: An Empirical Study

1999 ◽  
Vol 11 ◽  
pp. 169-198 ◽  
Author(s):  
D. Opitz ◽  
R. Maclin

An ensemble consists of a set of individually trained classifiers (such as neural networks or decision trees) whose predictions are combined when classifying novel instances. Previous research has shown that an ensemble is often more accurate than any of the single classifiers in the ensemble. Bagging (Breiman, 1996c) and Boosting (Freund & Shapire, 1996; Shapire, 1990) are two relatively new but popular methods for producing ensembles. In this paper we evaluate these methods on 23 data sets using both neural networks and decision trees as our classification algorithm. Our results clearly indicate a number of conclusions. First, while Bagging is almost always more accurate than a single classifier, it is sometimes much less accurate than Boosting. On the other hand, Boosting can create ensembles that are less accurate than a single classifier -- especially when using neural networks. Analysis indicates that the performance of the Boosting methods is dependent on the characteristics of the data set being examined. In fact, further results show that Boosting ensembles may overfit noisy data sets, thus decreasing its performance. Finally, consistent with previous studies, our work suggests that most of the gain in an ensemble's performance comes in the first few classifiers combined; however, relatively large gains can be seen up to 25 classifiers when Boosting decision trees.

2017 ◽  
Vol 10 (2) ◽  
pp. 695-708 ◽  
Author(s):  
Simon Ruske ◽  
David O. Topping ◽  
Virginia E. Foot ◽  
Paul H. Kaye ◽  
Warren R. Stanley ◽  
...  

Abstract. Characterisation of bioaerosols has important implications within environment and public health sectors. Recent developments in ultraviolet light-induced fluorescence (UV-LIF) detectors such as the Wideband Integrated Bioaerosol Spectrometer (WIBS) and the newly introduced Multiparameter Bioaerosol Spectrometer (MBS) have allowed for the real-time collection of fluorescence, size and morphology measurements for the purpose of discriminating between bacteria, fungal spores and pollen.This new generation of instruments has enabled ever larger data sets to be compiled with the aim of studying more complex environments. In real world data sets, particularly those from an urban environment, the population may be dominated by non-biological fluorescent interferents, bringing into question the accuracy of measurements of quantities such as concentrations. It is therefore imperative that we validate the performance of different algorithms which can be used for the task of classification.For unsupervised learning we tested hierarchical agglomerative clustering with various different linkages. For supervised learning, 11 methods were tested, including decision trees, ensemble methods (random forests, gradient boosting and AdaBoost), two implementations for support vector machines (libsvm and liblinear) and Gaussian methods (Gaussian naïve Bayesian, quadratic and linear discriminant analysis, the k-nearest neighbours algorithm and artificial neural networks).The methods were applied to two different data sets produced using the new MBS, which provides multichannel UV-LIF fluorescence signatures for single airborne biological particles. The first data set contained mixed PSLs and the second contained a variety of laboratory-generated aerosol.Clustering in general performs slightly worse than the supervised learning methods, correctly classifying, at best, only 67. 6 and 91. 1 % for the two data sets respectively. For supervised learning the gradient boosting algorithm was found to be the most effective, on average correctly classifying 82. 8 and 98. 27 % of the testing data, respectively, across the two data sets.A possible alternative to gradient boosting is neural networks. We do however note that this method requires much more user input than the other methods, and we suggest that further research should be conducted using this method, especially using parallelised hardware such as the GPU, which would allow for larger networks to be trained, which could possibly yield better results.We also saw that some methods, such as clustering, failed to utilise the additional shape information provided by the instrument, whilst for others, such as the decision trees, ensemble methods and neural networks, improved performance could be attained with the inclusion of such information.


2020 ◽  
Vol 6 ◽  
Author(s):  
Jaime de Miguel Rodríguez ◽  
Maria Eugenia Villafañe ◽  
Luka Piškorec ◽  
Fernando Sancho Caparrini

Abstract This work presents a methodology for the generation of novel 3D objects resembling wireframes of building types. These result from the reconstruction of interpolated locations within the learnt distribution of variational autoencoders (VAEs), a deep generative machine learning model based on neural networks. The data set used features a scheme for geometry representation based on a ‘connectivity map’ that is especially suited to express the wireframe objects that compose it. Additionally, the input samples are generated through ‘parametric augmentation’, a strategy proposed in this study that creates coherent variations among data by enabling a set of parameters to alter representative features on a given building type. In the experiments that are described in this paper, more than 150 k input samples belonging to two building types have been processed during the training of a VAE model. The main contribution of this paper has been to explore parametric augmentation for the generation of large data sets of 3D geometries, showcasing its problems and limitations in the context of neural networks and VAEs. Results show that the generation of interpolated hybrid geometries is a challenging task. Despite the difficulty of the endeavour, promising advances are presented.


2021 ◽  
Author(s):  
Louise Bloch ◽  
Christoph M. Friedrich

Abstract Background: The prediction of whether Mild Cognitive Impaired (MCI) subjects will prospectively develop Alzheimer's Disease (AD) is important for the recruitment and monitoring of subjects for therapy studies. Machine Learning (ML) is suitable to improve early AD prediction. The etiology of AD is heterogeneous, which leads to noisy data sets. Additional noise is introduced by multicentric study designs and varying acquisition protocols. This article examines whether an automatic and fair data valuation method based on Shapley values can identify subjects with noisy data. Methods: An ML-workow was developed and trained for a subset of the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. The validation was executed for an independent ADNI test data set and for the Australian Imaging, Biomarker and Lifestyle Flagship Study of Ageing (AIBL) cohort. The workow included volumetric Magnetic Resonance Imaging (MRI) feature extraction, subject sample selection using data Shapley, Random Forest (RF) and eXtreme Gradient Boosting (XGBoost) for model training and Kernel SHapley Additive exPlanations (SHAP) values for model interpretation. This model interpretation enables clinically relevant explanation of individual predictions. Results: The XGBoost models which excluded 116 of the 467 subjects from the training data set based on their Logistic Regression (LR) data Shapley values outperformed the models which were trained on the entire training data set and which reached a mean classification accuracy of 58.54 % by 14.13 % (8.27 percentage points) on the independent ADNI test data set. The XGBoost models, which were trained on the entire training data set reached a mean accuracy of 60.35 % for the AIBL data set. An improvement of 24.86 % (15.00 percentage points) could be reached for the XGBoost models if those 72 subjects with the smallest RF data Shapley values were excluded from the training data set. Conclusion: The data Shapley method was able to improve the classification accuracies for the test data sets. Noisy data was associated with the number of ApoEϵ4 alleles and volumetric MRI measurements. Kernel SHAP showed that the black-box models learned biologically plausible associations.


2020 ◽  
Vol 34 (04) ◽  
pp. 5620-5627 ◽  
Author(s):  
Murat Sensoy ◽  
Lance Kaplan ◽  
Federico Cerutti ◽  
Maryam Saleki

Deep neural networks are often ignorant about what they do not know and overconfident when they make uninformed predictions. Some recent approaches quantify classification uncertainty directly by training the model to output high uncertainty for the data samples close to class boundaries or from the outside of the training distribution. These approaches use an auxiliary data set during training to represent out-of-distribution samples. However, selection or creation of such an auxiliary data set is non-trivial, especially for high dimensional data such as images. In this work we develop a novel neural network model that is able to express both aleatoric and epistemic uncertainty to distinguish decision boundary and out-of-distribution regions of the feature space. To this end, variational autoencoders and generative adversarial networks are incorporated to automatically generate out-of-distribution exemplars for training. Through extensive analysis, we demonstrate that the proposed approach provides better estimates of uncertainty for in- and out-of-distribution samples, and adversarial examples on well-known data sets against state-of-the-art approaches including recent Bayesian approaches for neural networks and anomaly detection methods.


2021 ◽  
pp. 1-17
Author(s):  
Luis Sa-Couto ◽  
Andreas Wichert

Abstract Convolutional neural networks (CNNs) evolved from Fukushima's neocognitron model, which is based on the ideas of Hubel and Wiesel about the early stages of the visual cortex. Unlike other branches of neocognitron-based models, the typical CNN is based on end-to-end supervised learning by backpropagation and removes the focus from built-in invariance mechanisms, using pooling not as a way to tolerate small shifts but as a regularization tool that decreases model complexity. These properties of end-to-end supervision and flexibility of structure allow the typical CNN to become highly tuned to the training data, leading to extremely high accuracies on typical visual pattern recognition data sets. However, in this work, we hypothesize that there is a flip side to this capability, a hidden overfitting. More concretely, a supervised, backpropagation based CNN will outperform a neocognitron/map transformation cascade (MTCCXC) when trained and tested inside the same data set. Yet if we take both models trained and test them on the same task but on another data set (without retraining), the overfitting appears. Other neocognitron descendants like the What-Where model go in a different direction. In these models, learning remains unsupervised, but more structure is added to capture invariance to typical changes. Knowing that, we further hypothesize that if we repeat the same experiments with this model, the lack of supervision may make it worse than the typical CNN inside the same data set, but the added structure will make it generalize even better to another one. To put our hypothesis to the test, we choose the simple task of handwritten digit classification and take two well-known data sets of it: MNIST and ETL-1. To try to make the two data sets as similar as possible, we experiment with several types of preprocessing. However, regardless of the type in question, the results align exactly with expectation.


Kybernetes ◽  
2019 ◽  
Vol 48 (9) ◽  
pp. 2006-2029
Author(s):  
Hongshan Xiao ◽  
Yu Wang

Purpose Feature space heterogeneity exists widely in various application fields of classification techniques, such as customs inspection decision, credit scoring and medical diagnosis. This paper aims to study the relationship between feature space heterogeneity and classification performance. Design/methodology/approach A measurement is first developed for measuring and identifying any significant heterogeneity that exists in the feature space of a data set. The main idea of this measurement is derived from a meta-analysis. For the data set with significant feature space heterogeneity, a classification algorithm based on factor analysis and clustering is proposed to learn the data patterns, which, in turn, are used for data classification. Findings The proposed approach has two main advantages over the previous methods. The first advantage lies in feature transform using orthogonal factor analysis, which results in new features without redundancy and irrelevance. The second advantage rests on samples partitioning to capture the feature space heterogeneity reflected by differences of factor scores. The validity and effectiveness of the proposed approach is verified on a number of benchmarking data sets. Research limitations/implications Measurement should be used to guide the heterogeneity elimination process, which is an interesting topic in future research. In addition, to develop a classification algorithm that enables scalable and incremental learning for large data sets with significant feature space heterogeneity is also an important issue. Practical implications Measuring and eliminating the feature space heterogeneity possibly existing in the data are important for accurate classification. This study provides a systematical approach to feature space heterogeneity measurement and elimination for better classification performance, which is favorable for applications of classification techniques in real-word problems. Originality/value A measurement based on meta-analysis for measuring and identifying any significant feature space heterogeneity in a classification problem is developed, and an ensemble classification framework is proposed to deal with the feature space heterogeneity and improve the classification accuracy.


2019 ◽  
Vol 491 (4) ◽  
pp. 5238-5247 ◽  
Author(s):  
X Saad-Olivera ◽  
C F Martinez ◽  
A Costa de Souza ◽  
F Roig ◽  
D Nesvorný

ABSTRACT We characterize the radii and masses of the star and planets in the Kepler-59 system, as well as their orbital parameters. The star parameters are determined through a standard spectroscopic analysis, resulting in a mass of $1.359\pm 0.155\, \mathrm{M}_\odot$ and a radius of $1.367\pm 0.078\, \mathrm{R}_\odot$. The obtained planetary radii are $1.5\pm 0.1\, R_\oplus$ for the inner and $2.2\pm 0.1\, R_\oplus$ for the outer planet. The orbital parameters and the planetary masses are determined by the inversion of Transit Timing Variations (TTV) signals. We consider two different data sets: one provided by Holczer et al. (2016), with TTVs only for Kepler-59c, and the other provided by Rowe et al. (2015), with TTVs for both planets. The inversion method applies an algorithm of Bayesian inference (MultiNest) combined with an efficient N-body integrator (Swift). For each of the data set, we found two possible solutions, both having the same probability according to their corresponding Bayesian evidences. All four solutions appear to be indistinguishable within their 2-σ uncertainties. However, statistical analyses show that the solutions from Rowe et al. (2015) data set provide a better characterization. The first solution infers masses of $5.3_{-2.1}^{+4.0}~M_{\mathrm{\oplus }}$ and $4.6_{-2.0}^{+3.6}~M_{\mathrm{\oplus }}$ for the inner and outer planet, respectively, while the second solution gives masses of $3.0^{+0.8}_{-0.8}~M_{\mathrm{\oplus }}$ and $2.6^{+0.9}_{-0.8}~M_{\mathrm{\oplus }}$. These values point to a system with an inner super-Earth and an outer mini-Neptune. A dynamical study shows that the planets have almost co-planar orbits with small eccentricities (e < 0.1), close to the 3:2 mean motion resonance. A stability analysis indicates that this configuration is stable over million years of evolution.


1998 ◽  
Vol 185 ◽  
pp. 167-168
Author(s):  
T. Appourchaux ◽  
M.C. Rabello-Soares ◽  
L. Gizon

Two different data sets have been used to derive low-degree rotational splittings. One data set comes from the Luminosity Oscillations Imager of VIRGO on board SOHO; the observation starts on 27 March 96 and ends on 26 March 97, and are made of intensity time series of 12 pixels (Appourchaux et al, 1997, Sol. Phys., 170, 27). The other data set was kindly made available by the GONG project; the observation starts on 26 August 1995 and ends on 21 August 1996, and are made of complex Fourier spectra of velocity time series for l = 0 − 9. For the GONG data, the contamination of l = 1 from the spatial aliases of l = 6 and l = 9 required some cleaning. To achieve this, we applied the inverse of the leakage matrix of l = 1, 6 and 9 to the original Fourier spectra of the same degrees; cleaning of all 3 degrees was achieved simultaneously (Appourchaux and Gizon, 1997, these proceedings).


Author(s):  
Peter Grabusts

This paper describes a method of rule extraction from trained artificial neural networks. The statement of the problem is given. The aim of rule extraction procedure and suitable neural networks for rule extraction are outlined. The RULEX rule extraction algorithm is discussed that is based on the radial basis function (RBF) neural network. The extracted rules can help discover and analyze the rule set hidden in data sets. The paper contains an implementation example, which is shown through standalone IRIS data set.


2001 ◽  
Vol 11 (03) ◽  
pp. 247-255 ◽  
Author(s):  
GUIDO BOLOGNA

The problem of rule extraction from neural networks is NP-hard. This work presents a new technique to extract "if-then-else" rules from ensembles of DIMLP neural networks. Rules are extracted in polynomial time with respect to the dimensionality of the problem, the number of examples, and the size of the resulting network. Further, the degree of matching between extracted rules and neural network responses is 100%. Ensembles of DIMLP networks were trained on four data sets in the public domain. Extracted rules were on average significantly more accurate than those extracted from C4.5 decision trees.


Sign in / Sign up

Export Citation Format

Share Document