scholarly journals Effective Fennel (Foeniculum vulgare) Control with Herbicides in Natural Habitats in California

2008 ◽  
Vol 1 (1) ◽  
pp. 66-72 ◽  
Author(s):  
Carl E. Bell ◽  
Todd Easley ◽  
Kari Roesch Goodman

AbstractFennel is a major invasive plant in many lower elevation natural areas in coastal California. Three identical field experiments were conducted to evaluate glyphosate and triclopyr for control of fennel. Treatments included each herbicide applied alone and in various combinations. We also compared broadcast applications to spot spraying of individual fennel plants because spot spraying is a commonly used technique in natural area weed management. Most treatments controlled fennel well when evaluated 6 wk and 1 yr after treatment, with the exception of the lowest rate of glyphosate. Purple needlegrass, a native perennial grass, was present in two of the sites. In most, but not all, treatment and site combinations, it was not significantly harmed by the herbicides. The spot spray applications were less effective and used more herbicide per unit area than the broadcast spraying.

2012 ◽  
Vol 5 (3) ◽  
pp. 311-316 ◽  
Author(s):  
Bryan A. Endress ◽  
Catherine G. Parks ◽  
Bridgett J. Naylor ◽  
Steven R. Radosevich ◽  
Mark Porter

AbstractHerbicides are the primary method used to control exotic, invasive plants. This study evaluated restoration efforts applied to grasslands dominated by an invasive plant, sulfur cinquefoil, 6 yr after treatments. Of the five herbicides we evaluated, picloram continued to provide the best control of sulfur cinquefoil over 6 yr. We found the timing of picloram applications to be important to the native forb community. Plots with picloram applied in the fall had greater native forb cover. However, without the addition of native perennial grass seeds, the sites became dominated by exotic grasses. Seeding resulted in a 20% decrease in exotic grass cover. Successful establishment of native perennial grasses was not apparent until 6 yr after seeding. Our study found integrating herbicide application and the addition of native grass seed to be an effective grassland restoration strategy, at least in the case where livestock are excluded.


EDIS ◽  
2006 ◽  
Vol 2006 (4) ◽  
Author(s):  
Kenneth A. Langeland

Land and water managers who apply herbicides to control invasive plant species and other nuisance vegetation strive to minimize environmental impacts as a matter of policy and daily operations. It is, therefore, not surprising that concern has been expressed and many questions asked relative to recent publications by Relyea (2005a, 2005b, 2005c), which implicate use of glyphosate-containing herbicides in global decline of amphibians. The purpose of this article is to put these recent publications in perspective relative to aquatic and terrestrial natural area weed management and explain why land managers should continue to use glyphosate-containing products to protect managed habitats from weeds without concern for unreasonable adverse environmental impacts. This document is SS-AGR-104, one of a series of the Agronomy Department, Center for Aquatic and Invasive Plants, UF/IFAS Extension. Original publication date February 2006.


Weed Science ◽  
2005 ◽  
Vol 53 (5) ◽  
pp. 586-593 ◽  
Author(s):  
Matthew J. Rinella ◽  
Roger L. Sheley

Invasive weed managers are presented with a complicated and ever-enlarging set of management alternatives. Identifying the optimal weed management strategy for a given set of conditions requires predicting how candidate strategies will affect plant community composition. Although field experiments have advanced our ability to predict postmanagement composition, extrapolation problems limit the prediction accuracy achieved by interpreting treatment means as predictions. Examples of extrapolation problems include nonlinear relationships between competing plants, site-to-site variation in plant population growth rates, and the carrying capacities of desired species and weeds. Our objective was to develop a model that improves predictions of weed management outcomes by overcoming a subset of these problems. To develop the model, we used data from two field experiments in which four Kentucky bluegrass, six western wheatgrass, and six invasive plant (i.e., leafy spurge) densities were combined in field plots. Graphs of our model's predictions vs. observed field experiment data indicate that the model predicted the data accurately. Our model may improve predictions of plant community response to invasive weed management actions.


2020 ◽  
Vol 57 (3) ◽  
pp. 199-210
Author(s):  
Rajib Kundu ◽  
Mousumi Mondal ◽  
Sourav Garai ◽  
Ramyajit Mondal ◽  
Ratneswar Poddar

Field experiments were conducted at research farm of Bidhan Chandra Krishi Viswavidyalaya, Kalyani, West Bengal, India (22°97' N latitude and 88°44' E longitude, 9.75 m above mean sea level) under natural weed infestations in boro season rice (nursery bed as well as main field) during 2017-18 and 2018-19 to evaluate the herbicidal effects on weed floras, yield, non-target soil organisms to optimize the herbicide use for sustainable rice-production. Seven weed control treatments including three doses of bispyribac-sodium 10% SC (150,200, and 250 ml ha-1), two doses of fenoxaprop-p-ethyl 9.3% EC (500 and 625 ml ha-1), one weed free and weedy check were laid out in a randomized complete block design, replicated thrice. Among the tested herbicides, bispyribac-sodium with its highest dose (250 ml ha-1) resulted in maximum weed control efficiency, treatment efficiency index and crop resistance index irrespective of weed species and dates of observation in both nursery as well as main field. Similar treatment also revealed maximum grain yield (5.20 t ha-1), which was 38.38% higher than control, closely followed by Fenoxaprop-p-ethyl (625 ml ha-1) had high efficacy against grasses, sedge and broadleaf weed flora. Maximum net return (Rs. 48765 ha-1) and benefit cost ratio (1.72) were obtained from the treatment which received bispyribac-sodium @ 250 ml ha-1. Based on overall performance, the bispyribac-sodium (250 ml ha-1) may be considered as the best herbicide treatment for weed management in transplanted rice as well as nursery bed.


2021 ◽  
pp. 1-39
Author(s):  
Nathan H. Haugrud ◽  
Thomas J. Peters

Abstract The invasion of waterhemp into northern sugarbeet growing regions has prompted producers to re-integrate inter-row cultivation into weed management programs as no currently registered herbicides can control glyphosate-resistant waterhemp POST in crop. Inter-row cultivation was a common weed control practice in sugarbeet until the release of glyphosate-resistant sugarbeet cultivars in 2008 made the use of inter-row cultivation unnecessary. In the late 2010s, producers began again to use inter-row cultivation to remove weeds that glyphosate did not control, but producers need information on the effectiveness and safety of inter-row cultivation when used with soil residual herbicide programs. Efficacy and tolerance field experiments were conducted in Minnesota and North Dakota from 2017 to 2019. Results from the efficacy experiment demonstrated cultivation improved waterhemp control 11% and 12%, 14 and 28 DAT, respectively. Waterhemp response to cultivation was dependent on crop canopy and precipitation after cultivation. Cultivation had minimal effect on waterhemp density in three environments, but at one environment, near Galchutt, ND in 2019, waterhemp density increased 600% and 196%, 14 and 28 DAT, respectively. Climate data indicated Galchutt, ND in 2019 received 105 mm of precipitation in the 14 days following cultivation and had an open crop canopy which likely contributed to further weed emergence. Results from the tolerance experiment demonstrated root yield and recoverable sucrose were not affected by cultivation timing or number of cultivations. In one environment, cultivating reduced sucrose content by 0.8% regardless of date or cultivation number, but no differences were found in three environments. In-season cultivation can damage/destroy leaf tissue which is likely responsible for the reduction in sucrose content. Results indicate cultivation can be a valuable tool to control weeds that herbicide cannot, but excessive rainfall and open crop canopy following cultivation can create an environment conducive to further weed emergence.


2010 ◽  
Vol 32 (4) ◽  
pp. 419 ◽  
Author(s):  
Xing Teng ◽  
Lei Ba ◽  
Deli Wang ◽  
Ling Wang ◽  
Jushan Liu

Many studies indicated that saliva from herbivores might be involved in plant growth responses when plants have been grazed. However, there is currently no general agreement on whether saliva can affect plant growth. Our aims were to determine the growth response of plants to sheep saliva after defoliation under diverse environmental conditions (different sward structures), and whether the effect of saliva is influenced by time (duration) after its application. We conducted field experiments with clipping treatments and the application of sheep saliva to the damaged parts of tillers to simulate sheep grazing on the perennial grass Leymus chinensis (Trin.) Tzvelev during the early growing seasons. Results demonstrated that clipping with saliva application significantly increased tiller numbers 8 weeks after treatments in comparison with clipping alone. A key finding is that the effect of sheep saliva on plant growth was short-lived. Clipping with saliva application increased leaf weight in the second week, while clipping alone had no effect. Moreover, clipping with saliva application promoted the elongation of new leaves (not the old ones) in the first week whereas clipping alone was ineffective. Results also showed that there were no differences between clipping with saliva application and clipping alone for relative height growth rate and aboveground biomass. Therefore, we concluded that saliva application to clipping treatment would produce an additional effect compared to clipping alone for the plant and the positive effects are time dependent. The additional effects primarily embodied in the individual level of plant, such as the changes of leaf weight and leaf length. Beyond the level, the effects of saliva only produced many more tiller numbers rather than the accumulation of aboveground biomass.


1970 ◽  
Vol 33 (4) ◽  
pp. 623-629 ◽  
Author(s):  
MSA Khan ◽  
MA Hossain ◽  
M Nurul Islam ◽  
SN Mahfuza ◽  
MK Uddin

Field experiments were conducted at the research farm of Bangladesh Agricultural Research Institute, Joydebpur during kharif-1 (March to July) seasons of 2005 and 2006 to identify the critical period of crop-weed competition for Indian spinach. Major weed species were Paspalurn commersoni, Echinochlaa crusgalli. Lie nv/nc india. Cyanotis axillaris and Cyperus rotundus. The lowest weed dry matter was 76.3 g m-2 in 2005 and l01.60 g m-2 in 2006 from the plots weeded up to 40 days after transplanting (DAT). The highest yields were obtained (74.82 t ha in 2005 and 48.48 t ha in 2006) from the weed free plots. The fresh yield of Indian spinach did not vary among no weeding upto 20, 30 and 40 DAT in 2006. But weeded plot upto 30 and 40 DAT produced identical yield in 2005. Maximum BCR (4.52) was obtained from weeded plots upto 30 DAT in 2005 but BCR (2.60) was same from weeded upto 30 and 40 DA F in 2006. On an average, highest BCR (3.55) was recorded from weeding upto 30 DAT. Results revealed that the critical period of crop weed competition lies between 20 and 30 DAT and two times hand weeding would be necessary within 30 DAT for maximum benefit. Key Words: Crop-weed competitions, critical period, weed management and Indian spinach. doi: 10.3329/bjar.v33i4.2306 Bangladesh J. Agril. Res. 33(4) : 623-629, December 2008


1996 ◽  
Vol 10 (1) ◽  
pp. 145-152 ◽  
Author(s):  
John S. Richburg ◽  
John W. Wilcut ◽  
Daniel L. Colvin ◽  
Gerald R. Wiley

Field experiments conducted at four locations in Georgia and two locations in Florida during 1992 and 1993 evaluated AC 263,222 application rates and timings, systems, and mixtures for weed control, peanut injury, and yield. All rates of AC 263,222 applied early POST (EPOST) or POST controlledIpomoeamorningglories and smallflower morningglory at least 90%, and purple and yellow nutsedge at least 81%. Florida beggarweed and sicklepod control generally was highest when metolachlor was applied PPI followed by AC 263,222 applied EPOST at 71 g/ha, AC 263,222 at 27 or 36 g/ha plus bentazon plus paraquat applied POST, or with bentazon plus paraquat applied EPOST followed by AC 263,222 applied POST at 36 or 53 g/ha. Acifluorfen and acifluorfen plus bentazon reduced Florida beggarweed and sicklepod control at several locations when applied in mixture with AC 263,222. Common ragweed and hairy indigo control were 85 to 95% with bentazon plus paraquat applied EPOST followed by AC 263,222 applied POST at 36 or 53 g/ha. Highest peanut yields were obtained with treatments providing high levels of weed control.


2020 ◽  
Author(s):  
Marianne Jennifer Datiles ◽  
Ian Popay

Abstract Foeniculum vulgare, also known as sweet fennel, is a common kitchen herb used around the world - but it is also a highly invasive weed that can severely damage ecosystems. A risk assessment prepared for Hawaii gave the species a high risk score of 19 (PIER, 2015). F. vulgare is known to alter fire regimes and create dense stands, outcompeting native flora for nutrients and space (DiTomaso et al., 2013; Cal-IPC, 2015). It was listed in the Global Compendium of Weeds as an "agricultural weed, casual alien, cultivation escape, environmental weed, garden thug, naturalised, noxious weed, weed" (Randall, 2012), and is known to be invasive (mostly in natural habitats rather than agricultural land) in California, New Zealand, significant parts of Australia and a number of locations in the Pacific. (PIER, 2015). The species is a principal weed in Mexico and New Zealand, a common weed in Argentina, Australia, Hawaii, and Spain, weedy in Chile, Morocco, Uruguay, the USA, and Venezuela, and it is known to be adventive in China, Colombia (Holm et al., 1979; Flora of China Editorial Committee, 2015; PIER, 2015; Vascular Plants of Antioquia, 2015). It is also reported as invasive in Ethiopia and Kenya. It can regenerate by both seeds and roots, which often makes physical control methods ineffective and chemical control necessary once a population is established.


Sign in / Sign up

Export Citation Format

Share Document