Extreme Ionic and Temperature Effects on Germination of Weeping Alkaligrass (Puccinellia distans), Nuttall's Alkaligrass (Puccinellia nuttalliana) and Kentucky Bluegrass (Poa pratensis)

Weed Science ◽  
2007 ◽  
Vol 55 (4) ◽  
pp. 305-310 ◽  
Author(s):  
Catherine S. Tarasoff ◽  
Daniel A. Ball ◽  
Carol A. Mallory-Smith

The introduced species weeping alkaligrass, and the native species Nuttall's alkaligrass, two of the most salt-tolerant C3 grasses found in arid and semiarid environments of western North America, occur within the Grande Ronde valley of eastern Oregon. Both species occur as weeds within Kentucky bluegrass seed fields and subsequently as grass seed contaminants. Two separate germination experiments were conducted to understand better the seed germination biology of these two species compared to Kentucky bluegrass under negative water potentials or high temperature conditions. Results of these studies indicate that although all three species benefited from an ionic enhancement associated with NaCl, weeping alkaligrass was the most drought and salt tolerant of the three species. Dry seeds of weeping alkaligrass were also particularly tolerant to high temperatures with no differences in germination at temperatures below 50 C, indicating that seed viability under nonirrigated field conditions should be unaffected by high soil temperatures. Under soil temperature conditions as high as 40 C, moist Kentucky bluegrass seeds had the greatest germination rates, indicating that this species should benefit from irrigation more than the other two species.

HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 701g-702
Author(s):  
Edward S. Dehmer ◽  
Chiwon W. Lee

The influence of NaCl concentration on seed germination in blue grama grass (Bouteloua gracilis), salty alkaligrass (Puccinellia distans) and Kentucky bluegrass (Poa pratensis) were investigated. When seeds were germinated in petri dishes containing 0, 2.5, 5.0, 7.5, 10, 12.5, 15, 17.5, 20, 22.5, 25, 27.5, and 30 g·liter–1 NaCl at 22 C for 4 weeks, blue grama grass was most salt-tolerant with 50% germination at 17.5 g·liter–1. The salt concentrations that provided 50% germination for salty alkaligrass and Kentucky bluegrass were 5 and 1.5 g·liter–1, respectively. The upper limits of salinity that allowed any germination were 30 g·liter–1 (1%) for blue grama grass, 27.5 g·liter–1 (1%) for salty alkaligrass, and 5 g·liter–1 (2%) for Kentucky bluegrass. Germination was quickest in blue grama grass (90% germination in 1 week) followed by salty alkaligrass (50% in 3 weeks) and Kentucky bluegrass (50% in 4 weeks). The tissue contents of Na+ and Cl– as influenced by increasing levels of NaCl were also determined.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 817
Author(s):  
Rakhi Palit ◽  
Greta Gramig ◽  
Edward S. DeKeyser

Kentucky bluegrass (Poa pratensis L.) is one of the most aggressive grasses invading Northern Great Plains (NGP) grasslands, resulting in substantial native species losses. Highly diverse grasslands dominated by native species are gradually transforming into rangelands largely dominated by non-native Kentucky bluegrass. Several factors potentially associated with Kentucky bluegrass invasions, including high propagule pressure, thatch formation, climate change, and increasing nitrogen deposition, could determine the future dominance and spread of Kentucky bluegrass in the NGP. Because atmospheric CO2 is amplifying rapidly, a C3 grass like Kentucky bluegrass might be photosynthetically more efficient than native C4 grasses. As this exotic species shares similar morphological and phenological traits with many native cool-season grasses, controlling it with traditional management practices such as prescribed fire, grazing, herbicides, or combinations of these practices may also impair the growth of native species. Thus, developing effective management practices to combat Kentucky bluegrass spread while facilitating the native species cover is essential. Modifying traditional techniques and embracing science-based adaptive management tools that focus on the ecological interactions of Kentucky bluegrass with the surrounding native species could achieve these desired management goals. Enhancement of the competitiveness of surrounding native species could also be an important consideration for controlling this invasive species.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 999B-999
Author(s):  
James A. Poss ◽  
Catherine M. Grieve ◽  
Walter B. Russell ◽  
Stacy A. Bonos

Six cultivars or selections of Kentucky bluegrass (Poa pratensis L.) exposed to salinity stress were evaluated with ground-based remote sensing plant reflectance (R) measurements at wavelengths ranging from 350 nm to 2500 nm. Cultivars Baron, Brilliant, Cabernet, Eagleton, Midnight, and the selection A01-856, a Texas × Kentucky bluegrass hybrid (Poa arachnifera × P. pratensis), were grown outdoors from vegetative clones in a gravelly-sand medium from Apr. to Sept. 2005, in Riverside, Calif., at soil water salinities ranging from 2 to 22 dSm-1. Two Normalized Difference Vegetation Indicies (NDVI) were developed based on: 1) canopy reflectance in the visible domain at 695 and 670 nm and 2) an average of eight wavelengths in mid-infrared [Ravg = (R:1500, R:1680, R:1740, R:1940, R:2050, R:2170, R:2290, and R:2470 nm/8)] and the reference wavelength (670 nm). Both NDVIs were significantly sensitive to salinity-induced changes in grass canopies and were able to discriminate significantly between the salt-tolerant cultivars (`Baron', `Brilliant', and `Eagleton') and salt-sensitive cultivars (`Cabernet', `Midnight', and A01-856). Another remotely sensed index, based on the derivative of the absorbance (1/R) in the red-edge region between 600 and 800 nm, also generated a similar ranking to the NDVIs and biomass for the six cultivars. These findings indicate that remote sensing of canopy reflectance may represent an additional tool to evaluate and explain the biophysical or physiological differences among Kentucky bluegrass cultivars related to salt tolerance.


HortScience ◽  
2009 ◽  
Vol 44 (7) ◽  
pp. 2009-2014 ◽  
Author(s):  
Hua Shen ◽  
Hongmei Du ◽  
Zhaolong Wang ◽  
Bingru Huang

The objective of this study was to compare differential nutrient responses to heat stress in relation to heat tolerance for warm-season (C4) common bermudagrass [Cynodon dactylon (L.) Pers.] and cool-season (C3) kentucky bluegrass (Poa pratensis L.). Both species were exposed to two temperature regimes in growth chambers: optimal day/night temperature conditions (24/20 °C for kentucky bluegrass and 34/30 °C for bermudagrass) or heat stress (10 °C above the respective optimal temperature for each species). Heat injury in leaves was evaluated and the concentrations of several major macronutrients [nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg)] in both grass species were measured at 0, 7, 14, 21, and 28 days of treatment. Heat stress reduced leaf photochemical efficiency and cellular membrane stability in both species, but bermudagrass leaves exhibited less damage in these parameters than kentucky bluegrass. Heat stress caused a significant decline in N, P, and K concentration, beginning at 7 days in kentucky bluegrass, but had no significant effects on N, P, and K concentration in bermudagrass during the 28-day treatment period. The concentration of Ca and Mg increased under heat stress in both kentucky bluegrass and bermudagrass, but there were no significant differences between the species under optimal or high-temperature conditions, suggesting they were not involved in heat responses in either species. The differential responses of N, P, and K to heat stress could at least partially account for the differences in heat tolerance between the two species and demonstrate the importance of sufficient N, P, and K in turfgrass adaptation to heat stress.


HortScience ◽  
2011 ◽  
Vol 46 (7) ◽  
pp. 1038-1045 ◽  
Author(s):  
Sheng Wang ◽  
Qi Zhang ◽  
Eric Watkins

Prairie junegrass (Koeleria macrantha) is a perennial, cool-season, native grass that has shown potential for use as a turfgrass species in the northern Great Plains; however, limited information is available on its salt tolerance. In this study, salinity tolerance of four junegrass populations from North America (Colorado, Minnesota, Nebraska, and North Dakota) and two improved turf-type cultivars from Europe (‘Barleria’ and ‘Barkoel’) was evaluated and compared with kentucky bluegrass (Poa pratensis), perennial ryegrass (Lolium perenne), sheep fescue (Festuca ovina), hard fescue (F. brevipila), and tall fescue (F. arundinacea). Salinity tolerance was determined based on the predicted salinity level causing 50% reduction of final germination rate (PSLF) and daily germination rate (PSLD) as well as electrolyte leakage (EL), tissue dry weight (DW), and visual quality (VQ) of mature plants. All populations of prairie junegrass showed similar salt tolerance with an average of PSLF and PSLD being 7.1 and 5.3 g·L−1 NaCl, respectively, comparable to kentucky bluegrass and hard and sheep fescue but lower than tall fescue and perennial ryegrass. Larger variations were observed in VQ in the junegrasses compared with EL and DW, in which ‘Barleria’ from the European population showed the highest VQ, following two salt-tolerant grasses, tall fescue and sheep fescue. Nebraska population was the least salt-tolerant within the species but still exhibited similar or higher tolerance than kentucky bluegrass and perennial ryegrass cv. Arctic Green. Overall, junegrass was more salt-sensitive during germination but more tolerant to salinity when mature. Salinity tolerance of junegrass may be further improved through turfgrass breeding because salinity tolerance varied in different populations.


2020 ◽  
pp. 1-9
Author(s):  
Justin C. Collette ◽  
Mark K.J. Ooi

Abstract For physiologically dormant (PD) species in fire-prone environments, dormancy can be both complex due to the interaction between fire and seasonal cues, and extremely deep due to long intervals between recruitment events. Due to this complexity, there are knowledge gaps particularly surrounding the dormancy depth and cues of long-lived perennial PD species. This can be problematic for both in situ and ex situ species management. We used germination experiments that tested seasonal temperature, smoke, dark and heat for 18 PD shrub species distributed across temperate fire-prone Australia and assessed how germination was correlated with environmental factors associated with their home environments. We found extremely high levels of dormancy, with only eight species germinating above 10% and three species producing no germination at all. Seven of these eight species had quite specific seasonal temperature requirements and/or very strong responses to smoke cues. The maximum germination for each species was positively correlated with the mean temperature of the source population but negatively correlated with rainfall seasonality and driest months. The strong dependence on a smoke cue for some of the study species, along with examples from other studies, provides evidence that an obligate smoke response could be a fire-adapted germination cue. Germination response correlated with rainfall season of the source populations is a pattern which has often been assumed but little comparative data across sites with different rainfall seasonality exists. Further investigation of a broader range of species from different rainfall season environments would help to elucidate this knowledge gap.


2021 ◽  
Author(s):  
Filippo Guzzon ◽  
Maraeva Gianella ◽  
Jose Alejandro Velazquez Juarez ◽  
Cesar Sanchez Cano ◽  
Denise E Costich

Abstract Background and Aims The long-term conservation of seeds of plant genetic resources is of key importance for food security and preservation of agrobiodiversity. Nevertheless, there is scarce information available about seed longevity of many crops under germplasm bank conditions. Methods Through germination experiments as well as the analysis of historical monitoring data, we studied the decline in viability manifested by 1000 maize (Zea mays subsp. mays) seed accessions conserved for an average of 48 years at the CIMMYT germplasm bank, the largest maize seedbank in the world, under two cold storage conditions: an active (–3 °C; intended for seed distribution) and a base conservation chamber (–15 °C; for long-term conservation). Key Results Seed lots stored in the active chamber had a significantly lower and more variable seed germination, averaging 81.4 %, as compared with the seed lots conserved in the base chamber, averaging 92.1 %. The average seed viability detected in this study was higher in comparison with that found in other seed longevity studies on maize conserved under similar conditions. A significant difference was detected in seed germination and longevity estimates (e.g. p85 and p50) among accessions. Correlating seed longevity with seed traits and passport data, grain type showed the strongest correlation, with flint varieties being longer lived than floury and dent types. Conclusions The more rapid loss of seed viability detected in the active chamber suggests that the seed conservation approach, based on the storage of the same seed accessions in two chambers with different temperatures, might be counterproductive for overall long-term conservation and that base conditions should be applied in both. The significant differences detected in seed longevity among accessions underscores that different viability monitoring and regeneration intervals should be applied to groups of accessions showing different longevity profiles.


Sign in / Sign up

Export Citation Format

Share Document