Acclimation of Palmer Amaranth (Amaranthus palmeri) to Shading

Weed Science ◽  
2008 ◽  
Vol 56 (5) ◽  
pp. 729-734 ◽  
Author(s):  
Prashant Jha ◽  
Jason K. Norsworthy ◽  
Melissa B. Riley ◽  
Douglas G. Bielenberg ◽  
William Bridges

Experiments were conducted to investigate the acclimation of Palmer amaranth to shading. Plants were grown in the field beneath black shade cloths providing 47 and 87% shade and in full sunlight (no shading). All photosynthetic measurements were taken 4 wk after initiating the shade treatments. Photosynthetic rates of Palmer amaranth grown under 47% shade increased with increasing photosynthetic active radiation (PAR) similar to 0% shade-grown plants. Light-saturated photosynthetic rates were predicted beyond the highest measured PAR of 1,200 µmol m−2s−1for plants grown under 0 and 47% shade. Plants acclimated to increased shading by decreasing light-saturated photosynthetic rates from 60.5 µmol m−2s−1under full sun conditions to 26.4 µmol m−2s−1under 87% shade. Plants grown under 87% shade lowered their light compensation point. Rate of increase in plant height was similar among shade treatments. Plants responded to increased shading by a 13 to 44% reduction in leaf appearance rate (leaf number growing degree days [GDD]−1) and a 22 to 63% reduction in main-stem branch appearance rate (main-stem branch number GDD−1) compared with full sunlight. Palmer amaranth specific leaf area increased from 68 to 97 cm2g−1as shading increased to 87%. Plants acclimated to 47% shade by increasing total leaf chlorophyll from 22.8 µg cm−2in full sunlight to 31.7 µg cm−2when shaded; however, the increase was not significant at 87% shading. Thus, it is concluded that Palmer amaranth shows photosynthetic and morphological acclimation to 87% or less shading.

1996 ◽  
Vol 76 (1) ◽  
pp. 43-50 ◽  
Author(s):  
S. Pararajasingham ◽  
L. A. Hunt

Research on genotypic variation in the response of leaf-area production and expansion to photoperiod in wheat is limited. Growth-cabinet experiments using four spring and four winter wheat (Triticum aestivum L.) cultivars and four photoperiod (8, 12, 16 and 20 h) treatments were thus conducted with the objective of investigating the effect of photoperiod on leaf appearance rate and leaf dimensions. Winter wheats were grown without vernalization. In the spring wheats, flag leaves and spikes were formed under the longer photoperiod (16 and 20 h) treatments, and leaf number increased linearly with time. At the shorter photoperiods, flag leaves and spikes appeared in some cultivars only, and the rate of increase in leaf number decreased in the later stages. Final leaf number was greater at shorter photoperiods. In the winter cultivars, more leaves appeared than in the spring types under the longer photoperiods. For leaves 3–7, leaf number was a linear function of time, with photoperiod and cultivar effects. For one of four spring cultivars, the rate of leaf appearance was greater at 8 h than at 20 h, whereas for three of the winter cultivars the reverse was true. Leaf length increased with leaf number up to at least nodes 5–6 for both spring and winter types but decreased for the later-formed leaves for the spring but not for the winter types. Leaves of plants grown under photoperiods longer than 8 h were longer and broader than those grown under the short photoperiod, and the effect was more pronounced in winter than in spring cultivars. Such genotypic differences in the direct effects of photoperiod on leaf dimensions, which could influence the rates of leaf-area production and dry-matter accumulation under field conditions, emphasize that future studies should incorporate genotypes from different eco-physiological regions and that simulation models of wheat growth and development may need to account for variability in the control of vegetative growth. Key words: Wheat, photoperiod, leaf appearance rate, leaf length, leaf width


1978 ◽  
Vol 29 (5) ◽  
pp. 941 ◽  
Author(s):  
R Ferraris

Elephant grass (Pennisetum purpureum Schum.) was grown in phytotron cabinets for 60 days at 30/25° or 21/16°C (daylnight) in either 8 or 16 hr photoperiods. During the juvenile phase the higher temperature increased the leaf appearance rate, tillering rate and main stem elongation rate. Once plants in the 8 hr photoperiod became reproductive, the stem elongation, tillering rate and leaf appearance rate increased. The higher temperature continued to stimulate development. At harvest at 60 days plants grown at 30/25° had higher leaf, stem and total dry matter yields, a greater leaf area but lower carbohydrate content in the stubble. The 16 hr photoperiod produced higher dry matter yields at harvest than the 8 hr photoperiod. A comparison pot experiment grown in short day and long day photoperiods under field conditions in north Queensland produced similar findings to the phytotron experiment. After harvest, stubbles were ratooned into either short day (8 hr) or long day (16 hr) photoperiods, the temperature difference being maintained. Leaf number per main stem and main stem elongation were similar to those of the first crop, but more tillers and higher yields were produced in the ratoon crop. Temperature and photoperiod effects were similar in both crops. It was concluded that low temperatures rather than reduced photoperiod would be the greatest limitation to the adaptation of the species as an industrial or forage crop where yearround production is required.


Author(s):  
Ezio Riggi ◽  
Danilo Scordia ◽  
Concetta Foti Cuzzola ◽  
Giorgio Testa ◽  
Salvatore L. Cosentino

In the present study, a two-year field trial was carried out with the aim to evaluate daylength and air temperature effects on leaf appearance and related rates in two durum wheat (Triticum durum Desf.), two bread wheat (Triticum aestivum L.) and two barley (Hordeum vulgare L.) cultivars, using six different sowing dates (SD). Significant effects of SD on final main stem leaf number (FLN), thermal leaf appearance rate (TLAR), daily leaf appearance rate (DLAR) and phyllochron (PhL) were found. Cultivars resulted inversely correlated to mean air temperature in the interval emergence - fifth leaf full expansion (E-V). Linear response of leaf number over days after sowing was shown for all SD and cultivars, with R2 higher than 0.95. FLN linearly decreased from the first to the last SD for durum wheat, while more variable behaviour was observed in bread wheat. TLAR and DLAR showed a linear increment of the rate from the first to the last SD in durum wheat, while did not for bread wheat and barley. PhL in durum wheat decreased from the first to the last SD. Barley and bread wheat showed the highest values on those SDs which did not reach flowering. The increase of TLAR was affected by photoperiod and photothermal units in durum wheat, while by temperatures only in barley and bread wheat. Present results might find practical application in the improvement of phenology simulation models for durum wheat, bread wheat and barley grown in Mediterranean area in absence of water and nutrient stress.


2013 ◽  
Vol 85 (1) ◽  
pp. 371-377 ◽  
Author(s):  
Marcos F Silva ◽  
Edson M. V Porto ◽  
Dorismar D Alves ◽  
Cláudio M.T Vitor ◽  
Ignacio Aspiazú

This study aims to evaluate the morphogenetic characteristics of three cultivars of Brachiaria brizantha subjected to nitrogen fertilization. The design was a randomized block in factorial arrangement 4x3; three cultivars of B. brizantha - Marandu, Piatã, Xaraés and four nitrogen levels - 0, 80, 160 and 240 kg/ha, with three replications. The experimental units consisted of plastic pots filled with 5 dm3 of soil. Thereupon the establishment fertilization, varieties were sowed directly in the pots, leaving, after thinning, five plants per pot. Forty-five days after planting, it was done a standardization cut at 10 cm tall. Nitrogen levels were distributed according to the treatments, divided in three applications. The morphogenetic characteristics were evaluated in three tillers per sampling unit and data were submitted to analysis of variance and regression. For all evaluated characteristics there was no interaction between factors cultivar and nitrogen levels, verifying only the effects of nitrogen on the variables leaf appearance rate and phyllochron. The dose 240 kg/ha of N corresponds to the greater leaf appearance rate. Cultivar Marandu shows the higher leaf blade: pseudostem and ratio of leaf elongation rate and elongation pseudostem, which favors higher forage quality.


2019 ◽  
Vol 126 (4) ◽  
pp. 615-633 ◽  
Author(s):  
T Vidal ◽  
B Andrieu

Abstract Background and Aims The dynamics of plant architecture is a central aspect of plant and crop models. Most models assume that whole shoot development is orchestrated by the leaf appearance rate, which follows a thermal time schedule. However, leaf appearance actually results from leaf extension and taking it as an input hampers our ability to understand shoot construction. The objective of the present study was to assess a modelling framework for grasses, in which the emergence of leaves and other organs is explicitly calculated as a result of their extension. Methods The approach builds on a previous model, which uses a set of rules co-ordinating the timing of development within and between phytomers. We first assessed rule validity for four experimental datasets, including different cultivars, planting densities and environments, and accordingly revised the equations driving the extension of the upper leaves and of internodes. We then fitted model parameters for each dataset and evaluated the ability to simulate the measured phenotypes across time. Finally, we carried out a sensitivity analysis to identify the parameters that had the greatest impact and to investigate model behaviour. Key Results The modified version of the model simulated correctly the contrasting maize phenotypes. Co-ordination rules accounted for the observations in all studied cultivars. Factors with major impact on model output included extension rates, the time of tassel initiation and initial conditions. A large diversity of phenotypes could be simulated. Conclusions This work provides direct experimental evidence for co-ordination rules and illustrates the capacity of the model to represent contrasting phenotypes. These rules play an important role in patterning shoot architecture and some of them need to be assessed further, considering contrasting growth conditions. To make the model more predictive, several parameters could be considered in the future as internal variables driven by plant status.


1974 ◽  
Vol 82 (1) ◽  
pp. 165-172 ◽  
Author(s):  
Alison Davies

SUMMARYWhen one or two leaves were removed out of the three or sometimes four present on each tiller of five genotypes of perennial ryegrass grown in nutrient solution, it was found that the relative growth rate (RGR) was not much less than that of untreated plants. The removal of lower leaves had no effect on RGR. Removal of all leaf blades depressed RGR. It is suggested that the results obtained indicate that the plant has the capacity to compensate for loss of leaf tissue by increased activity in the remaining leaves. Leaf appearance rate and tiller production were found to be the attributes most sensitive to the defoliation treatments imposed, and the degree to which leaf appearance rates were affected by defoliation was found to be a good indicator of the regrowth capacity of the different genotypes. Evidence was obtained linking high regrowth potential with high relative increases in the proportion of plant material allocated to new shoot growth.


2007 ◽  
Vol 47 (7) ◽  
pp. 825 ◽  
Author(s):  
J. M. Lee ◽  
D. J. Donaghy ◽  
J. R. Roche

The objective of the current study was to quantify the effects of greater herbage residuals in winter on leaf appearance rate, herbage accumulation and quality, and plant energy reserves, as well as quantifying the effects nitrogen (N), or phosphorus (P) and sulfur (S) fertilisers had on the above measures. Ten pasture areas were grazed to different residual masses (1260 ± 101 and 1868 ± 139 kg DM/ha, Severe and Lax, respectively) over five consecutive days by dry dairy cows. Two randomly located subplots within each grazing area were fertilised with either 50 kg N/ha (N treatment) or 50 kg N/ha, 31 kg S/ha plus 26 kg P/ha (N + S + P treatment) on the day immediately following defoliation (day 1), and were compared with a control subplot. Neither growth rate (15.1 ± 8.1 kg DM/ha.day), nor leaf appearance rate (15.1 ± 0.3 days per new leaf) differed between treatments. As a result, herbage accumulated over the 49 days of regrowth was similar across grazing treatments and averaged 726 kg DM/ha. Application of N + S + P tended to increase total herbage accumulated during regrowth compared with either the control or N treatment subplots (860 v. 675 and 643 kg DM/ha, respectively), likely a result of increased tiller density. Swards defoliated more severely had lower initial water-soluble carbohydrate (WSC) concentrations compared with swards laxly defoliated, but this difference had disappeared before appearance of the third new leaf. Herbage quality improved in the Severe treatment subplots after emergence of the third new leaf, with higher digestibility, greater WSC and metabolisable energy, and lower fibre content than in laxly grazed subplots.


2009 ◽  
Vol 66 (1) ◽  
pp. 20-27 ◽  
Author(s):  
Omar Scheneiter ◽  
Beatriz Rosso ◽  
Mauro Corletto

When breeding temperate forage species is investigated, some attributes such as herbage accumulation and seasonal growth patterns have to be considered. To modify some of these traits, knowledge of the detailed process might be useful. In order to evaluate seasonal growth of contrasting white clover populations an experiment was carried out. Treatments were five cultivars and three local populations collected in Argentina. Weekly measures were taken during each season to calculate leaf appearance and flower appearance rates, stolon growing rate and dry matter (DM) net accumulation. Different germplasm of this species have different mechanisms for DM accumulation. Leaf size, more than leaf appearance rate, was the variable with most differences among germplasm and mostly related to dry matter accumulation. During spring and summer, inflorescences production had important effects on growing stolon rate, and differences among germplasm were evident. Some local populations showed favourable attributes that could be useful for breeding.


2016 ◽  
Vol 37 (4) ◽  
pp. 2099
Author(s):  
Priscila Beligoli Fernandes ◽  
Carlos Augusto Brandão de Carvalho ◽  
Domingos Sávio Campos Paciullo ◽  
Carlos Augusto De Miranda Gomide ◽  
Mirton José Frota Morenz ◽  
...  

This work was carried out to evaluate the morphogenetic and structural characteristics of basal and aerial tillers of two dwarf elephant grass clones (BRS Kurumi and CNPGL 00-1-3) managed under intermittent stocking in six grazing cycles. A completely randomized experimental design with three replications (paddocks) in split-split-plot arrangements was used. The clones were allocated to the plots, tiller classes were assigned to the subplots and grazing cycles to sub subplots. Higher values for basal tillers than aerial tillers were seen for the following characteristics: leaf elongation rate (12.8 and 5.1 cm/tiller/day), leaf appearance rate (0.26 and 0.19 leaves/tiller/day), stem elongation rate (0.38 and 0.16 cm/tiller/day), senescence rate (0.98 and 0.47 cm/tiller/day), total number of leaves (9.3 and 7.1 leaves/ tiller), number of live leaves (7.7 and 5.8 leaves/tiller) and final length of leaf blades (33.5 and 20.0 cm). Phyllochron was lower for basal (4.0 days/leaf) than aerial tillers (5.5 days/leaf). The leaf life span increased with the advance of the grazing cycles, averaging 31.2 days. The tiller density increased with the advance of the grazing cycles showing an average increase of 167% of aerial tillers and 62% of basal tillers for both clones. The morphogenetic and structural characteristics of dwarf clones were influenced jointly by the clones and the availability of the environmental factors of growth during the spring and summer. The high leaf elongation rates, associated with high leaf appearance rate, reveal the potential of high production dry matter of leaves and restoration of leaf area after grazing.


Sign in / Sign up

Export Citation Format

Share Document