Herbicidal Activity of the Metabolite SPRI-70014 from Streptomyces griseolus

Weed Science ◽  
2009 ◽  
Vol 57 (5) ◽  
pp. 547-553 ◽  
Author(s):  
Wenping Xu ◽  
Liming Tao ◽  
Xuebin Gu ◽  
Xiaoxia Shen ◽  
Sheng Yuan

Microbial metabolites have been identified as a promising class of natural herbicides due to their effective control against weeds and a relatively low environmental impact. Here we report on the potency and crop safety of a natural compound with herbicidal properties, the metabolite SPRI-70014 from Streptomyces griseolus CGMCC 1370. The compound showed excellent herbicidal activities on various broadleaf and gramineous weeds in both greenhouse and field trials. In germination inhibition experiments, SPRI-70014 inhibited the emergence of both root and shoot at 1 mg L−1. At a dose of 31.3 g ai ha−1, SPRI-70014 provided effective control over most broadleaf weeds in greenhouse trials. Observations on absorption and translocation using a cucumber plant model system indicated that SPRI-70014 could be absorbed by the root but only partly by the stem. Field trials showed that SPRI-70014 provided effective control over most weed species tested at a dose of 1,000 g ai ha−1. Crop safety experiments showed that the compound had no harmful effect on peanut or wheat plants at doses up to 2,000 g ai ha−1. These results indicated that this compound could be developed as a potential POST herbicide for control of broadleaf weeds in peanut and wheat fields.

Weed Science ◽  
1990 ◽  
Vol 38 (3) ◽  
pp. 267-272 ◽  
Author(s):  
Steven G. Russell ◽  
Thomas J. Monaco ◽  
Jerome B. Weber

Field trials were conducted in 1986 and 1987 to determine the effects of moisture on herbicidal activity of cinmethylin applied preemergence at 0.0, 0.3, 0.6, and 0.9 kg ai ha to both dry and moist sandy loam soil. Herbicide application was followed by varying amounts of irrigation. Weed species included velvetleaf, prickly sida, green foxtail, and barnyardgrass. When cinmethylin was applied to a moist soil or when 2.5 cm of irrigation was applied 5 days after cinmethylin application to a dry soil, overall weed control was reduced. Optimum weed control resulted from cinmethylin application to dry soil followed either by a 2.5-cm irrigation within 8 h or a 7.6-cm irrigation within 36 h.


2020 ◽  
pp. 1-8
Author(s):  
Adam P. Boyd ◽  
J. Scott McElroy ◽  
James D. McCurdy ◽  
Patrick E. McCullough ◽  
David Y. Han ◽  
...  

Abstract POST goosegrass and other grassy weed control in bermudagrass is problematic. Fewer herbicides that can control goosegrass are available due to regulatory pressure and herbicide resistance. Alternative herbicide options that offer effective control are needed. Previous research demonstrates that topramezone controls goosegrass, crabgrass, and other weed species; however, injury to bermudagrass may be unacceptable. The objective of this research was to evaluate the safening potential of topramezone combinations with different additives on bermudagrass. Field trials were conducted at Auburn University during summer and fall from 2015 to 2018 and 2017 to 2018, respectively. Treatments included topramezone mixtures and methylated seed oil applied in combination with five different additives: triclopyr, green turf pigment, green turf paint, ammonium sulfate, and chelated iron. Bermudagrass bleaching and necrosis symptoms were visually rated. Normalized-difference vegetative index measurements and clipping yield data were also collected. Topramezone plus chelated iron, as well as topramezone plus triclopyr, reduced bleaching potential the best; however, the combination of topramezone plus triclopyr resulted in necrosis that outweighed reductions in bleaching. Masking agents such as green turf paint and green turf pigment were ineffective in reducing injury when applied with topramezone. The combination of topramezone plus ammonium sulfate should be avoided because of the high level of necrosis. Topramezone-associated bleaching symptoms were transient and lasted 7 to 14 d on average. Findings from this research suggest that chelated iron added to topramezone and methylated seed oil mixtures acted as a safener on bermudagrass.


2009 ◽  
Vol 45 (No. 3) ◽  
pp. 113-118 ◽  
Author(s):  
Z. Pacanoski ◽  
G. Glatkova

Field trials were conducted in the Agricultural Research Institute for Rice, at two localities during 2005 and 2006. The objective of the study was to establish an appropriate weed management strategy for the effective control of weed flora in direct wet-seeded rice. Herbicide selectivity and influence on grain yield were also evaluated. The weed population in the trials was composed of 8 and 5 weed species in Kočani and Probi&scaron;tip locality, respectively. The most prevailing weeds in both localities were:Cyperus rotundus, Echinochloa crus-galli and Heteranthea limosa. The average weediness for both years was 456.8 weed stems per m<sup>2</sup> in Kočani locality and 589.0 weed stems per m<sup>2</sup> in Probi&scaron;tip locality. In both localities all herbicides controlled Cyperus rotundus, Echinochloa crus-galli and Heteranthera limosa excellently except Mefenacet 53 WP. All applied herbicides showed high selectivity to rice, no visual injuries were determined at any rates in any year and locality. Herbicidal treatments in both localities significantly increased rice grain yield in comparison with untreated control.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Michelle T. Fountain ◽  
Amir Badiee ◽  
Sebastian Hemer ◽  
Alvaro Delgado ◽  
Michael Mangan ◽  
...  

Abstract Spotted wing drosophila, Drosophila suzukii, is a serious invasive pest impacting the production of multiple fruit crops, including soft and stone fruits such as strawberries, raspberries and cherries. Effective control is challenging and reliant on integrated pest management which includes the use of an ever decreasing number of approved insecticides. New means to reduce the impact of this pest that can be integrated into control strategies are urgently required. In many production regions, including the UK, soft fruit are typically grown inside tunnels clad with polyethylene based materials. These can be modified to filter specific wavebands of light. We investigated whether targeted spectral modifications to cladding materials that disrupt insect vision could reduce the incidence of D. suzukii. We present a novel approach that starts from a neuroscientific investigation of insect sensory systems and ends with infield testing of new cladding materials inspired by the biological data. We show D. suzukii are predominantly sensitive to wavelengths below 405 nm (ultraviolet) and above 565 nm (orange & red) and that targeted blocking of lower wavebands (up to 430 nm) using light restricting materials reduces pest populations up to 73% in field trials.


Plant Disease ◽  
2021 ◽  
Author(s):  
Xue Yang ◽  
Chun-Yan Gu ◽  
Yang Bai ◽  
Jia-Zhi Sun ◽  
Hao-Yu Zang ◽  
...  

Pomegranate crown rot caused by Coniellagranati is one of the most severe diseases of pomegranate. To date, no fungicides have been registered for controlling this disease in China. Pyraclostrobin, belonging to strobilurin fungicides, has a broad spectrum of activity against many phytopathogens. In this study, based on the mycelial growth and conidial germination inhibition methods, we investigated the biological activity of pyraclostrobin against C. granati at the presence of 50 μg/mL SHAM using 80 isolates collected from different orchards in China during 2012-2018. The EC50 (50% effective concentration) values ranged from 0.040-0.613 μg/mL for mycelial growth and 0.013-0.110 μg/mL for conidium germination, respectively. Treated with pyraclostrobin, the hyphae morphology changed and conidial production of C. granati decreased significantly. The result of transmission electron microscope showed that treatment of pyraclostrobin could make the cell wall thinner, and lead to ruptured cell membrane and formation of intracellular organelle autophagosomes. The pyraclostrobin showed good protective and curative activities against C. granati on detached pomegranate fruits. In field trials, pyraclostrobin showed excellent control efficacy against this disease in which the treatment of 25% pyraclostrobin EC 1000× provided 92.25% and 92.58% control efficacy in 2019 and 2020, respectively, significantly higher than that of other treatments. Therefore, pyraclostrobin could be a candidate fungicide for the control of pomegranate crown rot.


2020 ◽  
Vol 27 (2) ◽  
pp. 37-45
Author(s):  
Arshad Javaid ◽  
Iqra Haider Khan

This study aimed to assess a brassicaceous weed Coronopus didymus (L.) Sm. as a source of potential natural herbicides for management of an alien weed parthenium (Parthenium hysterophorus L.). Initially, the effect of aqueous leaf, stem, root and flower extracts (0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0%) of the weed was checked on germination and growth of the target weed. Leaf and stem extracts showed the best herbicidal activity and a 2.5% extract of the each plant part completely inhibited germination of parthenium seeds. The lowest extract concentration (0.5%) of leaf and stem reduced germination by 56 and 46%, shoot length by 43 and 12%, root length by 59 and 62%, and biomass of whole plant by 44 and 15%, respectively. Root and flower extracts were less herbicidal and reduced parthenium germination by 23–52% and 33–56%, respectively. In a pot experiment, soil was incorporated with 0.2, 0.4, 0.6, 0.8, 0.10, 1.2% (w/w) crushed dry biomass of C. didymus, parthenium seeds were sown after one week and the effect of amendment on germination and plant growth was recorded after 45 days of sowing. All the doses of soil amendment significantly suppressed root length by 21–48% over control. A 1.2% soil amendment significantly reduced biomass of parthenium seedlings by 23%. This study concludes that leaf and stem extracts of parthenium possess potent herbicidal potential for control of parthenium.


2019 ◽  
Vol 109 (4) ◽  
pp. 571-581 ◽  
Author(s):  
Xingkai Cheng ◽  
Xiaoxue Ji ◽  
Yanzhen Ge ◽  
Jingjing Li ◽  
Wenzhe Qi ◽  
...  

Stalk rot is one of the most serious and widespread diseases in maize, and effective control measures are currently lacking. Therefore, this study aimed to develop a new biological agent to manage this disease. An antagonistic bacterial strain, TA-1, was isolated from rhizosphere soil and identified as Bacillus methylotrophicus based on morphological and biochemical characterization and 16S ribosomal RNA and gyrB gene sequence analyses. TA-1 exhibited a strong antifungal effect on the growth of Fusarium graminearum mycelium, with 86.3% inhibition at a concentration of 108 CFU per ml. Transmission electron microscopy showed that TA-1 could disrupt the cellular structure of the fungus, induce necrosis, and degrade the cell wall. Greenhouse and field trials were performed to evaluate the biocontrol efficacy of TA-1 on maize stalk rot, and the results of greenhouse experiment revealed that the bacterium significantly reduced disease incidence and disease index. Seeds treated with a 108 CFU ml−1 cell suspension had the highest disease suppression at 86.8%. Results of field trials show that seed bacterization with TA-1 could not only reduce maize stalk rot incidence but also increase maize height, stem diameter, and grain yield. The lipopeptide antibiotics were isolated from the culture supernatants of TA-1 and identified as surfactins and iturins. Consequently, B. methylotrophicus TA-1 is a potential biocontrol agent against maize stalk rot.


2008 ◽  
Vol 48 (12) ◽  
pp. 1506 ◽  
Author(s):  
T. J. Ridsdill-Smith ◽  
A. A. Hoffmann ◽  
G. P. Mangano ◽  
J. M. Gower ◽  
C. C. Pavri ◽  
...  

The redlegged earth mite, Halotydeus destructor, continues to be an intractable pest causing damage to most crop and pasture species in southern Australia. H. destructor feed on all stages of plants, but particularly damage seedlings in autumn. Research has aimed to develop new controls based on a better understanding of the biology and ecology of this pest. Chemicals remain the key tool to control H. destructor, despite the recent appearance of resistance to synthetic pyrethroids. A control package, Timerite, has been developed by which a single well-timed spray in spring can prevent H. destructor from developing diapause eggs. Field trials show this strategy provides effective control of H. destructor the following autumn, and protects plant seedlings, although mite populations build up again during winter. Non-chemical control strategies include grazing, the use of tolerant plants such as cereals, resistant legume cultivars and avoiding rotations where favourable host plants are available in the year before growing susceptible crops such as canola. Natural enemies can assist in mite control, and their numbers can be enhanced by methods including increasing landscape features like shelterbelts. Interspecific competition can occur between H. destructor and other pest mites, but the extent to which these interactions influence the structure of pest communities under different management regimes remains to be investigated.


Weed Science ◽  
2016 ◽  
Vol 64 (3) ◽  
pp. 531-539 ◽  
Author(s):  
Zubeyde Filiz Arslan ◽  
Martin M. Williams ◽  
Roger Becker ◽  
Vincent A. Fritz ◽  
R. Ed Peachey ◽  
...  

Atrazine has been the most widely used herbicide in North American processing sweet corn for decades; however, increased restrictions in recent years have reduced or eliminated atrazine use in certain production areas. The objective of this study was to identify the best stakeholder-derived weed management alternatives to atrazine in processing sweet corn. In field trials throughout the major production areas of processing sweet corn, including three states over 4 yr, 12 atrazine-free weed management treatments were compared to three standard atrazine-containing treatments and a weed-free check. Treatments varied with respect to herbicide mode of action, herbicide application timing, and interrow cultivation. All treatments included a PRE application of dimethenamid. No single weed species occurred across all sites; however, weeds observed in two or more sites included common lambsquarters, giant ragweed, morningglory species, velvetleaf, and wild-proso millet. Standard treatments containing both atrazine and mesotrione POST provided the most efficacious weed control among treatments and resulted in crop yields comparable to the weed-free check, thus demonstrating the value of atrazine in sweet corn production systems. Timely interrow cultivation in atrazine-free treatments did not consistently improve weed control. Only two atrazine-free treatments consistently resulted in weed control and crop yield comparable to standard treatments with atrazine POST: treatments with tembotrione POST either with or without interrow cultivation. Additional atrazine-free treatments with topramezone applied POST worked well in Oregon where small-seeded weed species were prevalent. This work demonstrates that certain atrazine-free weed management systems, based on input from the sweet corn growers and processors who would adopt this technology, are comparable in performance to standard atrazine-containing weed management systems.


2018 ◽  
Vol 3 (3) ◽  
pp. 86 ◽  
Author(s):  
Damilare Famakinde

Schistosomiasis remains the most important tropical snail-borne trematodiasis that threatens many millions of human lives. In achieving schistosomiasis elimination targets, sustainable control of the snail vectors represents a logical approach. Nonetheless, the ineffectiveness of the present snail control interventions emphasizes the need to develop new complementary strategies to ensure more effective control outcomes. Accordingly, the use of genetic techniques aimed at driving resistance traits into natural vector populations has been put forward as a promising tool for integrated snail control. Leveraging the Biomphalaria-Schistosoma model system, studies unraveling the complexities of the vector biology and those exploring the molecular basis of snail resistance to schistosome infection have been expanding in various breadths, generating many significant discoveries, and raising the hope for future breakthroughs. This review provides a compendium of relevant findings, and without neglecting the current existing gaps and potential future challenges, discusses how a transgenic snail approach may be adapted and harnessed to control human schistosomiasis.


Sign in / Sign up

Export Citation Format

Share Document