Target Enzyme-Based Resistance to Clethodim inLolium rigidumPopulations in Australia

Weed Science ◽  
2015 ◽  
Vol 63 (4) ◽  
pp. 946-953 ◽  
Author(s):  
Rupinder Kaur Saini ◽  
Jenna Malone ◽  
Christopher Preston ◽  
Gurjeet Gill

Clethodim resistance was identified in 12 rigid ryegrass populations from winter cropping regions in four different states of Australia. Clethodim had failed to provide effective control of these populations in the field and resistance was suspected. Dose–response experiments confirmed resistance to clethodim and butroxydim in all populations. During 2012, the LD50of resistant populations ranged from 10.2 to 89.3 g ha−1, making them 3 to 34–fold more resistant to clethodim than the susceptible population. Similarly, GR50of resistant population varied from 8 to 37.1 g ha−1, which is 3 to 13.9–fold higher than the susceptible population. In 2013, clethodim-resistant populations were 7.8 to 35.3–fold more resistant to clethodim than the susceptible population. The higher resistance factor in 2013, especially in moderately resistant populations, could have been associated with lower ambient temperatures during the winter of 2013. These resistant populations had also evolved cross-resistance to butroxydim. The resistant populations required 1.3 to 6.6–fold higher butroxydim dose to achieve 50% mortality and 3 to 27–fold more butroxydim for 50% biomass reduction compared to the standard susceptible population. Sequencing of the target-site ACCase gene identified five known ACCase substitutions (isoleucine-1781-leucine, isoleucine-2041-asparagine, aspartate-2078-glycine, and cysteine-2088-arginine, and glycine-2096-alanine) in these populations. In nine populations, multiple ACCase mutations were present in different individuals. Furthermore, two alleles with different mutations were present in a single plant of rigid ryegrass in two populations.

2012 ◽  
Vol 56 (11) ◽  
pp. 5661-5666 ◽  
Author(s):  
C. Silva-Costa ◽  
A. Friães ◽  
M. Ramirez ◽  
J. Melo-Cristino ◽  

ABSTRACTA steady decline in macrolide resistance amongStreptococcus pyogenes(group A streptococci [GAS]) in Portugal was reported during 1999 to 2006. This was accompanied by alterations in the prevalence of macrolide resistance phenotypes and in the clonal composition of the population. In order to test whether changes in the macrolide-resistant population reflected the same changing patterns of the overall population, we characterized both macrolide-susceptible and -resistant GAS associated with a diagnosis of tonsillo-pharyngitis recovered in the period from 2000 to 2005 in Portugal. Pulsed-field gel electrophoresis (PFGE) profiling was the best predictor ofemmtype and the only typing method that could discriminate clones associated with macrolide resistance and susceptibility within eachemmtype. Six PFGE clusters were significantly associated with macrolide susceptibility: T3-emm3-ST406, T4-emm4-ST39, T1-emm1-ST28, T6-emm6-ST382, B3264-emm89-ST101/ST408, and T2-emm2-ST55. Four PFGE clusters were associated with macrolide resistance: T4-emm4-ST39, T28-emm28-ST52, T12-emm22-ST46, and T1-emm1-ST28. We found no evidence for frequent ongoing horizontal transfer of macrolide resistance determinants. The diversity of the macrolide-resistant population was lower than that of susceptible isolates. The differences found between the two populations suggest that the macrolide-resistant population of GAS has its own dynamics, independent of the behavior of the susceptible population.


Weed Science ◽  
2020 ◽  
Vol 68 (2) ◽  
pp. 116-124 ◽  
Author(s):  
Marcos Yanniccari ◽  
Ramón Gigón

AbstractIn Argentina, Lolium spp. occur in 40% of winter cereal crops from the Pampas. Several years ago, cases of glyphosate-resistant perennial ryegrass (Lolium perenne L.) were detected, and the use of acetyl-CoA carboxylase (ACCase)-inhibiting herbicides to eradicate these plants has been considered. The aim of this study was to evaluate the sensitivity of a putative pinoxaden-resistant L. perenne population to ACCase-inhibiting herbicides. Around 80% of plants from the putative resistant population survived at a recommended dose of pinoxaden, and they produced viable seeds. The resistance indices (RIs) to pinoxaden were 5.1 and 2.8 for plant survival and seed production, respectively. A single point mutation that conferred a Asp-2078-Gly substitution in ACCase was the source of the resistance. To match the plant control achieved in the susceptible population, the resistant population required 5.4- and 10.4-fold greater doses of clethodim and quizalofop, respectively. RIs for viable seed production when treated with clethodim and quizalofop were 3.3 and 6.6, respectively. The Asp-2078-Gly mutation endowed significant levels of resistance to pinoxaden, clethodim, and quizalofop. For three herbicides, the level of resistance of a pinoxaden-resistant L. perenne population to ACCase inhibitors was evaluated, based on an evaluation of dose response for plant survival and seed production. The RIs were higher for plant survival than for seed production. In Argentina, the selection pressure associated with clethodim and haloxifop preplant application and pinoxaden use on wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) crops, would have favored the propagation of the Asp-2078-Gly mutation with its associated resistance.


Weed Science ◽  
2017 ◽  
Vol 66 (2) ◽  
pp. 168-179 ◽  
Author(s):  
Elizabeth Karn ◽  
Roland Beffa ◽  
Marie Jasieniuk

Reduced control of Italian ryegrass in California with herbicides has raised concerns about the evolution of populations with resistance to multiple herbicides. The goal of this study was to investigate variation among populations in plant response and resistance to glyphosate and glufosinate in Italian ryegrass from vineyards and orchards in northwest California. Population resistance screening using field-collected seed revealed up to 56.9% of individuals surviving glyphosate treatment at 1,678 g ae ha−1, and 53.5% of individuals surviving glufosinate treatment at 2,242 g ai ha−1in the same population. Frequencies of surviving plants within populations varied among screening times, particularly for glufosinate. Treating vegetatively propagated, genetically identical tillers with each herbicide pointed to separate mechanisms of resistance rather than cross-resistance to glyphosate and glufosinate. Dose–response experiments were conducted for each herbicide at two different screening times using a subset of populations, field-collected seed, and 10 herbicide rates. Plant survival and biomass were evaluated for each population at 3 wk after treatment and for plant regrowth 1 wk thereafter. Log-logistic regression models fit to the data were used to estimate LD50, GR50, and RD50values and calculate resistance indices (R/S ratios). Based on LD50values, the most highly resistant population was 14.4- to 19.2-fold more resistant to glyphosate than the most susceptible population tested but only 1.6- to 2.0-fold more resistant to glufosinate than the most susceptible population tested. Levels of resistance to both herbicides varied with screening time period and variable measured. Results indicate high frequencies of glyphosate-resistant plants but an early stage in the evolution of glufosinate resistance in some Italian ryegrass populations of northwest California.


Weed Science ◽  
1999 ◽  
Vol 47 (3) ◽  
pp. 258-261 ◽  
Author(s):  
François J. Tardif ◽  
Stephen B. Powles

The effect of the organophosphate insecticide malathion on the response of resistant rigid ryegrass population SLR 31 to the herbicides trifluralin, pendimethalin, clomazone, and triallate was investigated. The insecticide and herbicides were soil-applied prior to emergence of plants grown under controlled conditions. In the absence of malathion, the resistant population exhibited significant resistance to the four herbicides compared with a susceptible population. Levels of resistance, as determined by comparison of herbicide rates required to inhibit growth by 50%, were 35, 11, 2.4, and 2.4 for pendimethalin, trifluralin, triallate, and clomazone, respectively. Malathion had a synergistic effect on pendimethalin in the resistant population but not in the susceptible population. Malathion had no synergistic effect on trifluralin, triallate and clomazone. Resistance to triallate and clomazone was found despite the fact that the resistant population had never before been selected with these herbicides. This resistance, selected by other herbicides, further indicates that the use of alternative herbicides to control multiple resistant weeds is unlikely to be a successful resistance management approach.


Weed Science ◽  
2017 ◽  
Vol 65 (4) ◽  
pp. 452-460 ◽  
Author(s):  
Haitao Gao ◽  
Jiaxing Yu ◽  
Lang Pan ◽  
Xibao Wu ◽  
Liyao Dong

Keng stiffgrass is a serious farmland grass weed distributed globally in winter wheat fields and rice–wheat double-cropping areas. The intensive use of acetyl-CoA carboxylase (ACCase)-inhibiting herbicides has led to the evolution of resistance in a growing number of grass weeds. In this study, whole-plant pot bioassay experiments were conducted to establish that a Keng stiffgrass population from eastern China, JYJD-2, has evolved high-level resistance to fenoxaprop-P-ethyl and moderate resistance to quizalofop-P-ethyl and pinoxaden. Using the derived cleaved amplified polymorphic sequence method, a tryptophan-to-cysteine mutation at codon position 1999 (W1999C) was detected in the ACCase gene of the resistant population JYJD-2. Of the 100 JYJD-2 plants tested, we found 47 heterozygous resistant and 53 homozygous sensitive individuals. In vitro ACCase assays revealed that the IC50value of the ACCase activity of the resistant population JYJD-2 was 6.48-fold higher than that of the susceptible population JYJD-1. To the best of our knowledge, this is the first report of the occurrence of W1999C mutation in the ACCase gene of fenoxaprop-P-ethyl–resistant Keng stiffgrass. This study confirmed the resistance of Keng stiffgrass to the ACCase inhibitor fenoxaprop-P-ethyl, cross-resistance to other ACCase inhibitors, and the resistance being conferred by specific ACCase point mutations at amino acid position 1999.


Weed Science ◽  
2017 ◽  
Vol 66 (2) ◽  
pp. 246-253 ◽  
Author(s):  
Benjamin Fleet ◽  
Jenna Malone ◽  
Christopher Preston ◽  
Gurjeet Gill

Populations of rigid ryegrass suspected of resistance to trifluralin due to control failures exhibited varying levels of susceptibility to trifluralin, with 15 out of 17 populations deemed resistant (>20% plant survival). Detailed dose–response studies were conducted on one highly resistant field-evolved population (SLR74), one known multiply resistant population (SLR31), and one susceptible population (VLR1). On the basis of the dose required to kill 50% of treated plants (LD50), SLR74 had 15-fold greater resistance than VLR1, whereas, the multiply resistant SLR31 had 10-fold greater resistance than VLR1. Similarly, on the basis of dose required to reduce shoot biomass by 50% (GR50), SLR74 had 17-fold greater resistance than VLR1, and SLR31 had 8-fold greater resistance than VLR1. Sequencing of the α-tubulin gene from resistant plants of different populations confirmed the presence of a previously known goosegrass mutation causing an amino acid substitution at position 239 from threonine to isoleucine in resistant population SLR74. This mutation was also found in 4 out of 5 individuals in another highly resistant population TR2 and in 3 out of 5 individuals of TR4. An amino acid substitution from valine to phenylalanine at position 202 was also observed in TR4 (3 out of 5 plants) and TR2 (1 out of 5 plants). There was no target-site mutation identified in SLR31. This study documents the first known case of field-evolved target-site resistance to dinitroaniline herbicides in a population of rigid ryegrass.


1969 ◽  
Vol 26 (9) ◽  
pp. 2395-2401 ◽  
Author(s):  
Dudley D. Culley Jr. ◽  
Denzel E. Ferguson

The extent of insecticide resistance in a resistant population of mosquitofish (Gambusia affinis) from Belzoni, Mississippi, was compared with that of a susceptible population from State College, Mississippi, using 28 insecticides of five major groups. Results of 48-hr bioassays show that resistant mosquitofish have developed high resistance only to the toxaphene–endrin related insecticides, even though insecticides from other groups were heavily applied. Spray records for the Belzoni area and insecticide characteristics such as stability and toxicity aided in evaluating cross-resistance patterns in the resistant population. Patterns of resistance in mosquitofish are similar to those in many resistant arthropods.


2011 ◽  
Vol 26 (4) ◽  
pp. 393-399 ◽  
Author(s):  
Danijela Pavlovic ◽  
Charlie Reinhardt ◽  
Igor Elezovic ◽  
Sava Vrbnicanin

Glyphosate resistance was found in Lolium rigidum Gaudin (Rigid ryegrass, LOLRI) in South Africa. Suspected glyphosate-resistant L. rigidum populations were collected and grown under greenhouse conditions. The plants were sprayed with a range of doses of glyphosate 35 days after planting and shoot dry biomass was determined 17 days after herbicide treatment. Based on the dose-response experiment conducted in the greenhouse, one population of L. rigidum suspected to be resistant to glyphosate was approximately 5.3 fold more resistant than susceptible population. The other population was 2.8 fold more resistant than susceptible population. Difference between the two suspected resistant populations was 1.9 fold. All plants were treated with glyphosate (1000 g a.i. ha-1) and shikimic acid was extracted 2, 4 and 6 days after treatment. The plants of susceptible populations accumulated more shikimic acid than other two populations.


Weed Science ◽  
2012 ◽  
Vol 60 (3) ◽  
pp. 474-479 ◽  
Author(s):  
Yazid Bostamam ◽  
Jenna M. Malone ◽  
Fleur C. Dolman ◽  
Peter Boutsalis ◽  
Christopher Preston

Glyphosate is widely used for weed control in the grape growing industry in southern Australia. The intensive use of glyphosate in this industry has resulted in the evolution of glyphosate resistance in rigid ryegrass. Two populations of rigid ryegrass from vineyards, SLR80 and SLR88, had 6- to 11-fold resistance to glyphosate in dose-response studies. These resistance levels were higher than two previously well-characterized glyphosate-resistant populations of rigid ryegrass (SLR77 and NLR70), containing a modified target site or reduced translocation, respectively. Populations SLR80 and SLR88 accumulated less glyphosate, 12 and 17% of absorbed glyphosate, in the shoot in the resistant populations compared with 26% in the susceptible population. In addition, a mutation within the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) where Pro106had been substituted by either serine or threonine was identified. These two populations are more highly resistant to glyphosate as a consequence of expressing two different resistance mechanisms concurrently.


Weed Science ◽  
1994 ◽  
Vol 42 (3) ◽  
pp. 369-377 ◽  
Author(s):  
Michael W. M. Burnet ◽  
Quentin Hart ◽  
Joseph A. M. Holtum ◽  
Stephen B. Powles

Rigid ryegrass population VLR69 has become resistant to nine classes of herbicides after 21 yr of exposure to five herbicides in five different chemical classes. The population was exposed to diuron in 17 seasons and is resistant to diuron (4 fold) and chlorotoluron (8 fold) when compared with a reference susceptible population (VLR1). VLR69 had six seasons of exposure to chlorsulfuron and exhibits a high level of resistance to chlorsulfuron (> 20 fold) and triasulfuron (> 25 fold) and a lesser change in sensitivity to sulfometuron (7 fold); however, 4% of the population has a high level of resistance to sulfometuron. Resistance to atrazine (5 fold), simazine (6 fold), and ametryn (10 fold) was observed after five seasons of exposure to atrazine. There is a high level of resistance to all aryloxyphenoxypropionate herbicides after only two exposures to diclofop eight generations prior to testing the population. The population was cross-resistant to tralkoxydim (> 9.5 fold) and sethoxydim (1.8 fold). There was a small change in sensitivity to paraquat (1.4 fold) after three generations of exposure. The population displayed cross-resistance to: imazaquin (7 fold), imazapyr (2.5 fold), metribuzin (8.7 fold), and metolachlor (2 fold) but was susceptible to oxyfluorfen and dinitroaniline herbicides. There was also a small shift in sensitivity to tridiphane (1.6 fold).


Sign in / Sign up

Export Citation Format

Share Document