Effect of Wheat Herbicide Carryover on Double-Crop Cotton and Soybean

2012 ◽  
Vol 26 (2) ◽  
pp. 207-212 ◽  
Author(s):  
Timothy L. Grey ◽  
L. Bo Braxton ◽  
John S. Richburg

In the southeastern United States many farmers double-crop winter wheat with soybean or cotton. However, there is little information about residual injury of herbicides used in wheat to these rotational crops. Experiments were conducted from 2007 to 2008 and 2008 to 2009 in soft red winter wheat to evaluate response of rotational crops of soybean and cotton after application of various acetolactate synthase herbicides in wheat. Pyroxsulam, mesosulfuron, sulfosulfuron, propoxycarbazone, or chlorsulfuron plus metsulfuron at multiple rates were applied to wheat approximately 110 to 120 d before planting rotational crops. Soils were Tift loamy sand at Ty Ty, GA and Faceville sandy loam at Plains, GA. After wheat harvest, soybean (‘Pioneer 97M50’) and cotton (‘DP 0949 B2RF’) were strip-tillage planted and evaluated for injury, stand density, height over time, and yields. For both locations, wheat was tolerant to all herbicide treatments with little to no visible injury 7 to 90 d after application. Pyroxsulam injury was less than sulfosulfuron or mesosulfuron. At recommended use rates, wheat injury was transient with no effect on yield. Double-crop soybean for both locations had no differences in stand establishment for any herbicide treatments. There was significant carryover injury to soybean and cotton for sulfosulfuron applied to wheat for the Faceville sandy loam. There was no effect of herbicide treatment on cotton stand. There was little to no difference in residual activity on rotational crops between pyroxsulam and other wheat herbicides when labeled rates were applied. This is significant as pyroxsulam is used to control Italian ryegrass and wild radish in this region.

2012 ◽  
Vol 26 (3) ◽  
pp. 405-409 ◽  
Author(s):  
Timothy L. Grey ◽  
George S. Cutts ◽  
Jerry Johnson

Inability to control Italian ryegrass in soft red winter wheat can result in reduced yields, reduced quality, or both and cause double-crop planting to be inefficient. Experiments were conducted at Plains, GA, to evaluate diclofop-susceptible Italian ryegrass control in a single-gene imidazolinone (IMI)-resistant wheat using imazamox, mesosulfuron, and diclofop. Treatments were applied at variable rates and tank mixtures to the IMI-resistant soft red winter wheat ‘AGS CL7’ at Feekes' stages 1 (EMERG) or 2 (POST). Lower Italian ryegrass control of 78% or less was observed with single treatments of EMERG or POST herbicide applications. Diclofop provided maximum Italian ryegrass control of 79% or greater with minimal injury to wheat cultivar AGS CL 7. Sequential applications of diclofop at EMERG followed by imazamox, mesosulfuron, or diclofop POST provided maximum Italian ryegrass control at 86% or greater. The efficacy of the acetolactate synthase (ALS)–inhibiting herbicides registered for wheat weed control for AGS CL7 and ‘AGS 2000’ (conventional) was also evaluated. Mesosulfuron at 40 g ai ha−1resulted in 17% injury at 7 d after application (DAA), tribenuron at 40 g ai ha−1caused 9% injury 7 DAA, and pyroxsulam at 190 g ai ha−1caused 7% injury at 7 DAA, but was transient and not observed after heading or at harvest. No yield differences were noted between the nontreated control for AGS 2000 and AGS CL 7 for chlorsulfuron, mesosulfuron, thifensulfuron, tribenuron, prosulfuron, and pyroxsulam.


2007 ◽  
Vol 21 (1) ◽  
pp. 151-158 ◽  
Author(s):  
Chad S. Trusler ◽  
Thomas F. Peeper ◽  
Amanda E. Stone

An experiment was conducted at three sites in central Oklahoma to compare the efficacy of Italian ryegrass management options in no-till (NT) and conventional tillage (CT) winter wheat. The Italian ryegrass management options included selected herbicide treatments, wheat-for-hay, and a rotation consisting of double-crop soybean seeded immediately after wheat harvest, followed by early season soybean, and then by wheat. In continuous wheat, before application of glyphosate or tillage, Italian ryegrass plant densities in mid-September were 12,300 to 15,000 plants/m2in NT plots vs. 0 to 500 plants/m2in CT plots. When applied POST, diclofop controlled more Italian ryegrass than tralkoxydim or sulfosulfuron. In continuous wheat, yields were greater in CT plots than in NT plots at two of three sites. None of the Italian ryegrass management options consistently reduced Italian ryegrass density in the following wheat crop. Of the Italian ryegrass control strategies applied to continuous wheat, three herbicide treatments in NT at Chickasha and all treatments in NT at Perry reduced Italian ryegrass density in the following wheat crop. Italian ryegrass plant density in November and spike density were highly related to wheat yield at two and three sites, respectively. No management options were more profitable than rotation to soybean.


2019 ◽  
Vol 33 (03) ◽  
pp. 431-440
Author(s):  
Thomas J. Peters ◽  
Andrew B. Lueck ◽  
Aaron L. Carlson

AbstractSugarbeet growers only recently have combined ethofumesate, S-metolachlor, and dimethenamid-P in a weed control system for waterhemp control. Sugarbeet plant density, visible stature reduction, root yield, percent sucrose content, and recoverable sucrose were measured in field experiments at five environments between 2014 and 2016. Sugarbeet stand density and stature reduction occurred in some but not all environments. Stand density was reduced with PRE application of S-metolachlor at 1.60 kg ai ha–1 and S-metolachlor at 0.80 kg ha–1 + ethofumesate at 1.68 kg ai ha–1 alone or followed by POST applications of dimethenamid-P at 0.95 kg ai ha–1. Sugarbeet visible stature was reduced when dimethenamid-P followed PRE treatments. Stature reduction was greatest with ethofumesate at 1.68 or 4.37 kg ha–1 PRE and S-metolachlor at 0.80 kg ha–1 + ethofumesate at 1.68 kg ha–1 PRE followed by dimethenamid-P at 0.95 kg ha–1 POST. Stature reduction ranged from 0 to 32% 10 d after treatment (DAT), but sugarbeet recovered quickly and visible injury was negligible 23 DAT. Although root yield and recoverable sucrose were similar across herbicide treatments and environments, we caution against the use of S-metolachlor at 0.80 kg ha–1 + ethofumesate at 1.68 kg ai ha–1 PRE followed by dimethenamid-P at 0.95 kg ha–1 in sugarbeet.


2005 ◽  
Vol 19 (2) ◽  
pp. 261-265 ◽  
Author(s):  
Aaron J. Hoskins ◽  
Bryan G. Young ◽  
Ronald F. Krausz ◽  
John S. Russin

Field studies were established in 1999 and 2000 to evaluate Italian ryegrass, wheat, and double-crop soybean response to fall and spring postemergence applications of flucarbazone, sulfosulfuron, clodinafop, diclofop, and tralkoxydim applied alone and in combination with thifensulfuron + tribenuron to winter wheat. Fall-applied herbicides caused 5% or less wheat injury. Spring-applied herbicides caused 3 to 45% wheat injury, and the greatest injury occurred with the combination of flucarbazone with thifensulfuron + tribenuron in the spring of 2001. Spring-applied sulfosulfuron, tralkoxydim, diclofop, and clodinafop caused 3 to 6% and 16 to 26% wheat injury in 2000 and 2001, respectively. Herbicide injury to wheat did not reduce wheat grain yield compared with the hand-weeded treatment. Italian ryegrass competition in the nontreated plots reduced wheat yield by as much as 33% compared with herbicide-treated plots. Italian ryegrass control was 89 to 99% from clodinafop and diclofop and 78 to 97% from flucarbazone, with no differences because of application timing in either year of the study. Italian ryegrass control from sulfosulfuron and tralkoxydim was greater from the spring of 2000 applications (94 to 99%) compared with the fall of 1999 applications (65 to 88%). However, in 2001, application timing (fall vs. spring) for sulfosulfuron and tralkoxydim did not affect Italian ryegrass control. Thifensulfuron + tribenuron combined with tralkoxydim reduced control of Italian ryegrass control compared with tralkoxydim alone in both years of the study. Italian ryegrass control was not reduced when thifensulfuron + tribenuron was combined with sulfosulfuron, flucarbazone, diclofop, or clodinafop. Italian ryegrass was controlled effectively by the acetyl-CoA carboxylase–inhibiting herbicides diclofop, clodinafop, and tralkoxydim. However, control of Italian ryegrass with the acetolactate synthase–inhibiting herbicides flucarbazone and sulfosulfuron was inconsistent. Double-crop soybean after wheat did not have foliar symptoms or yield loss from fall- or spring-applied herbicides.


Weed Science ◽  
2016 ◽  
Vol 64 (2) ◽  
pp. 331-338 ◽  
Author(s):  
Mingyang Liu ◽  
Andrew G. Hulting ◽  
Carol Mallory-Smith

Many Italian ryegrass populations in Oregon are resistant to more than one herbicide; therefore, the resistance patterns of these populations must be determined to identify alternative herbicides for management. Two suspected resistant Italian ryegrass populations (R2 and R4) survived flufenacet plus metribuzin applications under typical winter wheat production conditions. Populations R2 and R4 were resistant to clethodim, pinoxaden, quizalofop, mesosulfuron-methyl, flufenacet, but not to acetochlor, dimethenamid-p, metolachlor, pyroxasulfone, imazapyr, sulfometuron, or glyphosate. R4 was resistant to diuron, but R2 was not. The estimated flufenacet doses required for 50% growth reduction (GR50) were 438 g ai ha−1(R2) and 308 g ai ha−1(R4). Both populations were controlled by pyroxasulfone at rates greater than 15 g ai ha−1. An Asp-2078-Gly substitution in the ACCase gene was found in both populations, while an Ile-2041-Asn was found only in the R4 population. A Ser-264-Gly substitution inpsbA gene was found in the R4 population. These mutations previously have been reported to provide resistance to ACCase and photosynthetic inhibitors, respectively. No resistance mutations were identified in the acetolactate synthase (ALS) gene of either population. The addition of the P450 inhibitor, chlorpyrifos, increased the injury resulting from mesosulfuron-methyl on both resistant populations providing indirect evidence that the ALS resistance may be metabolic. Multiple herbicide-resistant Italian ryegrass populations were identified in this study with both target site and nontarget site based mechanisms likely involved. However, several herbicides were identified including pyroxasulfone, a herbicide in the same group as flufenacet, which could be used to control these two populations.


1993 ◽  
Vol 7 (3) ◽  
pp. 625-632 ◽  
Author(s):  
Joseph D. Walsh ◽  
Michael S. Defelice ◽  
Barry D. Sims

Experiments were conducted in 1988, 1989, and 1990 at two locations in Missouri to study the influence of fall tillage on the soil persistence of several soybean herbicides and subsequent injury to the rotational crops winter wheat, corn, cotton, and grain sorghum. Chlorimuron, clomazone, imazaquin, imazethapyr, and metribuzin plus chlorimuron were applied at their label and double label rate (2X) in soybean. Fall chisel plowing did not influence the carryover potential of these herbicides on any of the crops, in any year, or at either location of the research. However, herbicides injured several of these rotational crops. The 2X-label rate of clomazone reduced winter wheat grain yield at both locations. None of the herbicide treatments at either location reduced corn yield. Imazaquin applied at the 2X rate caused greater than 30% visible injury to cotton in 1989; however, cotton yield was not affected. The 2X rate of chlorimuron caused a reduction of grain sorghum yield in 1989, but not in 1990 or 1991 at Novelty.


2018 ◽  
Vol 32 (6) ◽  
pp. 739-748 ◽  
Author(s):  
Eric N. Johnson ◽  
Zhijie Wang ◽  
Charles M. Geddes ◽  
Ken Coles ◽  
Bill Hamman ◽  
...  

AbstractIn response to concerns about acetolactate synthase (ALS) inhibitor–resistant weeds in wheat production systems, we explored the efficacy of managingBromusspp., downy and Japanese bromes, in a winter wheat system using alternative herbicide treatments applied in either fall or spring. Trials were established at Lethbridge and Kipp, Alberta, and Scott, Saskatchewan, Canada over three growing seasons (2012–2014) to compare the efficacy of pyroxasulfone (a soil-applied very-long-chain fatty acid elongase inhibitor; WSSA Group 15) and flumioxazin (a protoporphyrinogen oxidase inhibitor; WSSA Group 14) against industry-standard ALS-inhibiting herbicides for downy and Japanese brome control. Winter wheat injury from herbicide application was minor, with the exception of flucarbazone application at Scott.Bromusspp. control was greatest with pyroxsulam and all herbicide treatments containing pyroxasulfone. Downy and Japanese bromes were controlled least by thiencarbazone and flumioxazin, respectively, whereasBromusspp. had intermediate responses to the other herbicides tested. Herbicides applied in fall resulted in reduced winter wheat yield relative to the spring applications. Overall, pyroxasulfone or pyroxsulam provided the most efficaciousBromusspp. control compared with the other herbicides and consistently maintained optimal winter wheat yields. Therefore, pyroxasulfone could facilitate management ofBromusspp. resistant to ALS inhibitors in winter wheat in the southern growing regions of western Canada. Improved weed control and delayed herbicide resistance may be achieved when pyroxasulfone is applied in combination with flumioxazin.


2008 ◽  
Vol 22 (3) ◽  
pp. 431-434 ◽  
Author(s):  
Andrew T. Ellis ◽  
Gaylon D. Morgan ◽  
Thomas C. Mueller

Acetolactate synthase (ALS)–inhibiting herbicides are often used to control Italian ryegrass in winter wheat in Texas. An Italian ryegrass biotype near Waco, TX was evaluated for resistance to mesosulfuron in field and greenhouse experiments. Control of the biotype in the field was less than 10% with the label rate of mesosulfuron (15 g ai/ha). Greenhouse studies confirmed that the biotype was resistant to mesosulfuron; control of the biotype was less than 35% at 120 g ai/ha mesosulfuron. The herbicide dose required to reduce plant biomass of a susceptible and the Waco biotype by 50% (GR50) was 1.3 and 31 g ai/ha, respectively, indicating a resistance level of 24-fold in the Waco biotype. However, the Waco biotype was controlled with the acetyl-CoA carboxylase inhibitors diclofop and pinoxaden.


2017 ◽  
Vol 31 (5) ◽  
pp. 651-657
Author(s):  
Timothy L. Grey ◽  
Alexx Diera ◽  
J. Michael Moore ◽  
Keith S. Rucker ◽  
Christopher L. Butts

In the southeastern United States, growers often double-crop soft red winter wheat with peanut. In some areas, tobacco is also grown as a rotational crop. Pyrasulfotole is a residual POST-applied herbicide used in winter wheat, but information about its effects on rotational crops is limited. Winter wheat planted in autumn 2014 was treated at Feekes stage 1 or 2 with pyrasulfotole at 300 or 600 g ai ha−1. Wheat was terminated by glyphosate at Feekes stage 3 to 4. Peanut was planted via strip tillage, while tobacco was transplanted into prepared beds after minimal soil disturbance. Peanut exhibited no differences in stand establishment, growth, or yield, and tobacco stand, growth, and biomass yields were not different from the nontreated control for any pyrasulfotole rate or treatment timing.


1998 ◽  
Vol 130 (4) ◽  
pp. 389-397 ◽  
Author(s):  
I. F. SHIELD ◽  
E. T. G. BACON

Six management regimes for 1-year set-aside were compared with continuous winter wheat for their effects on weed control in two following test crops of winter wheat. The experiment was repeated in each of three years (1989–91) on predominantly sandy loam soils in eastern England. The weed flora was dominated by Poa spp., Stellaria media, Matricaria spp., Chenopodium album and volunteer crops, predominantly wheat.Managing set-aside by allowing natural regeneration and cutting it 2–4 times during the growing season resulted in fewest weeds in the following wheat crop. It was also a low cost option. Winter wheat, despite the application of herbicides, was not as effective in minimizing weeds in the winter wheat test crops as the best set-aside options.An Italian ryegrass cover crop set seed despite being cut 2–4 times per year. The only serious weed infestation arising in following wheat crops was from volunteer ryegrass in the second wheat following set-aside. The effects of management in the set-aside year were generally greater in the second of the following wheats than in the first.


Sign in / Sign up

Export Citation Format

Share Document