Tolerance of Five Warm-Season Turfgrass Species to Flumioxazin

2014 ◽  
Vol 28 (2) ◽  
pp. 340-350 ◽  
Author(s):  
Thomas V. Reed ◽  
Patrick E. McCullough

Flumioxazin provides PRE and POST, annual weed control in dormant bermudagrass, but applications during active growth may be injurious. Flumioxazin could also provide an alternative chemistry for POST annual bluegrass control in other turfgrasses, but research is limited on tolerance levels. The objective of this research was to evaluate tolerance of five warm-season turfgrasses to flumioxazin applied at various rates and timings. Late-winter applications of flumioxazin at 0.21, 0.42, or 0.84 kg ai ha−1caused acceptable (< 20%) injury to bermudagrass, seashore paspalum, St. Augustinegrass, and zoysiagrass at 3, 6, and 9 wk after treatment (WAT) in both years. In 2012, late-winter applications to centipedegrass caused unacceptable injury at 6 WAT, but turf recovered to acceptable levels by 9 WAT at all rates. Applications made during active turfgrass growth caused unacceptable initial injury to all species. However, bermudagrass, seashore paspalum, St. Augustinegrass, and zoysiagrass recovered to < 20% injury by 9 WAT from all rates. In 2012, centipedegrass treated in midspring had 0, 24, and 74% injury from flumioxazin at 0.21, 0.42, and 0.84 kg ha−1, respectively, at 9 WAT. In 2013, midspring applications to centipedegrass caused 13, 48, and 71% injury from 0.21, 0.42, and 0.84 kg ha−1, respectively at 9 WAT. Overall, flumioxazin has the potential to control annual weeds in bermudagrass, seashore paspalum, St. Augustinegrass, and zoysiagrass with late-winter applications before greenup, but all turfgrasses may be excessively injured during active growth.

2012 ◽  
Vol 22 (1) ◽  
pp. 131-136 ◽  
Author(s):  
Filippo Rimi ◽  
Stefano Macolino ◽  
Bernd Leinauer

In transitional environments, turf managers and sod producers of warm-season grasses face the issue of winter annual weeds that can dominate dormant turf stands through the winter until late spring. The use of glyphosate to control weeds in dormant bermudagrass (Cynodon dactylon) has been well documented, but information is lacking about its effect on spring green-up of other warm-season grasses. A field study was conducted on two commercial sod farms in northern Italy (Expt. 1) to evaluate the effects of glyphosate applied on two different winter dates on weed control and spring green-up of ‘Zeon’ manilagrass (Zoysia matrella). A second study was carried out at the experimental agricultural farm of Padova University (Expt. 2) to assess the effects of a winter application of glyphosate on weed control and spring green-up of ‘Yukon’ bermudagrass and ‘Companion’ zoysiagrass (Zoysia japonica). Each experiment was conducted from Jan. to June 2011, and glyphosate was applied at 1.1 kg·ha−1 on 8 and 21 Feb. in Expt. 1 and on 8 Feb. in Expt. 2. Spring recovery was evaluated by periodical visual ratings of green turf cover and by collecting normalized difference vegetation indices (NDVIs). Weed injury was visually evaluated on all plots 7 weeks after the 8 Feb. glyphosate application. The visual ratings of green cover were strongly and positively correlated with NDVI measurements. Glyphosate applied in February as a single treatment effectively controlled winter weeds in ‘Zeon’ manilagrass (Expt. 1) and ‘Yukon’ bermudagrass (Expt. 2) without negatively affecting spring green-up. In contrast, spring green-up of ‘Companion’ zoysiagrass (Expt. 2) was delayed by the application of glyphosate.


2015 ◽  
Vol 29 (1) ◽  
pp. 42-47 ◽  
Author(s):  
Jialin Yu ◽  
Patrick E. McCullough ◽  
Mark A. Czarnota

Turfgrass injury from triazines has limited the use of photosystem II (PS II) inhibitors for weed control in seashore paspalum. Amicarbazone is a new PS II inhibitor with potential safety in seashore paspalum, but the effects of application timing on turf tolerance has received limited investigation. Field experiments were conducted in Griffin, GA to evaluate the tolerance of ‘Sea Isle 1’ seashore paspalum to amicarbazone applications in winter, spring, and summer. Seashore paspalum had minimal injury (< 5%) from amicarbazone treatments (98, 196, and 392 g ai ha−1) applied for annual bluegrass control in winter and spring. By 6 wk after treatment (WAT), amicarbazone at 392 g ha−1provided 78 and 90% annual bluegrass control in 2013 and 2014, respectively, and was similar to pronamide at 1,680 g ai ha−1. Amicarbazone at 196 g ha−1provided 71% control of annual bluegrass in 2014, but control was poor (< 70%) in 2013. Sequential amicarbazone applications at 98 g ha−1provided poor control in both years by 6 WAT. From six amicarbazone rates (up to 984 g ha−1) applied in summer, seashore paspalum required 510 and < 123 g ha−1for 20% turfgrass injury (I20) and 20% clipping reduction (CR20), respectively, whereas I20and CR20measured > 984 g ha−1for ‘Tifway’ bermudagrass. Overall, amicarbazone may be safely applied to seashore paspalum in winter, spring, and summer at rates and regimens evaluated. However, seashore paspalum may exhibit shoot growth inhibition up to 4 WAT, suggesting that end users should be cautious when using amicarbazone during active growth in summer.


2016 ◽  
Vol 30 (4) ◽  
pp. 965-978 ◽  
Author(s):  
Sandeep S. Rana ◽  
Shawn D. Askew

Methiozolin is a new isoxazoline herbicide that has scarcely been tested in Kentucky bluegrass turf. A field trial was conducted in Blacksburg, VA, to determine response of 110 Kentucky bluegrass varieties and winter annual weeds to sequential fall applications of methiozolin. At 1.5 and 6 mo after initial treatment (MAIT), Kentucky bluegrass injury I30values (predicted methiozolin rate that causes 30% Kentucky bluegrass injury) ranged between 3.4 to more than 10 times the recommended methiozolin rate for annual bluegrass control. Methiozolin at all rates reduced cover of annual bluegrass, common chickweed, corn speedwell, hairy bittercress, mouseear chickweed, and Persian speedwell but increased cover of parsley-piert. For all varieties, methiozolin at 2 kg ai ha−1increased Kentucky bluegrass cover, turf quality, and turf normalized difference vegetation index (NDVI) relative to the nontreated check at 6 MAIT. Kentucky bluegrass relative cover change (RCC) was attributed primarily to weed control but was inversely correlated with methiozolin rates because of increased weed control and reduced Kentucky bluegrass growth. Despite the decline in RCC with increasing methiozolin rates, most Kentucky bluegrass varieties treated with the highest methiozolin rate (6 kg ha−1) still had greater Kentucky bluegrass cover than the nontreated check at 6 MAIT. Results from this study indicate that two fall applications of methiozolin at rates beyond that previously reported for annual bluegrass control can safely be applied to a broad range of Kentucky bluegrass varieties spanning most of the known genetic classifications.


2012 ◽  
Vol 22 (6) ◽  
pp. 774-777 ◽  
Author(s):  
Gerald M. Henry ◽  
James T. Brosnan ◽  
Greg K. Breeden ◽  
Tyler Cooper ◽  
Leslie L. Beck ◽  
...  

Indaziflam is an alkylazine herbicide that controls winter and summer annual weeds in bermudagrass (Cynodon sp.) turf by inhibiting cellulose biosynthesis. Research was conducted in Tennessee and Texas during 2010 and 2011 to evaluate the effects of indaziflam applications on overseeded perennial ryegrass (Lolium perenne) establishment and summer annual weed control. In Texas, perennial ryegrass cover on plots treated with indaziflam at 0.75 and 1.0 oz/acre measured 37% to 48% compared with 88% for the untreated control 257 days after initial treatment (DAIT). Perennial ryegrass cover following applications of indaziflam at 0.5 oz/acre measured 84% 257 DAIT and did not differ from the untreated control on any evaluation date. Inconsistent responses in crabgrass (Digitaria sp.) control with indaziflam at 0.5 oz/acre were observed in Tennessee and Texas. However, control was similar to the 0.75-oz/acre rate and prodiamine at 7.8 oz/acre at each location. A September application of indaziflam at 0.75 oz/acre followed by a sequential treatment at 0.5 oz/acre in March of the following year provided >90% control by June 2011. Indaziflam application regimes of this nature would allow for successful fall overseeding of perennial ryegrass every two years and control winter annual weed species such as annual bluegrass (Poa annua).


Weed Science ◽  
1968 ◽  
Vol 16 (4) ◽  
pp. 478-481 ◽  
Author(s):  
S. W. Bingham

Fall treatments with 2-chloro-4,6-bis(ethylamino)-s-triazine (simazine) as opposed to cultivation during the growing season reduced hand labor requirements more than 70% for weed control in Japanese holly (Ilex crenata Thumb. Rotundifolia Hort.). The response of Japanese holly to simazine varied from superior growth and quality to severe injury and death. Simazine plus 3-amino-1,2,4-triazole (amitrole) resulted in better control of small weeds than simazine alone in late winter or early spring. Dimethyl 2,3,5,6-tetrachloroterephthalate (DCPA), N,N-dimethyl-2,2-diphenylacetamide (diphenamid), and 2,6-dichlobenzonitrile (dichlobenil) reduced labor requirements for control of annual weeds without any visual response on the Japanese holly. In certain instances, rotations of herbicides were effective for broad spectrum weed control.


1966 ◽  
Vol 67 (2) ◽  
pp. 239-242
Author(s):  
Maurice Eddowes

Dinoseb and TCA were successfully used to control weeds in potatoes by Robertson (1960), and Wood, Sutherland & Stephens (1960). Since then many investigations have been carried out on the use of newer herbicides including the bipyridils, triazines and substituted ureas. The results of a number of these studies, presented at the Seventh British Weed Control Conference (1964), suggested that herbicides might give effective control of annual weeds in potatoes under a range of British conditions. Yields of marketable ware following herbicide treatment were similar, in general, to those obtained following standard post-planting cultivations, but occasionally the yields after herbicide treatment were either as much as 20% higher or lower than the controls. The performance of the herbicides was related mainly to weed flora, soil type and amount and distribution of rainfall.


1971 ◽  
Vol 77 (2) ◽  
pp. 247-252 ◽  
Author(s):  
Maurice Eddowes

SummaryRecent developments in chemical weed control in sugar beet have been reviewed. Two main approaches to the problem of providing reliable season-long control of annual weeds in sugar beet are, (a) the use of mixtures of herbicides applied pre-planting and incorporated into the soil during seed bed preparation, and (b) the use of split applications with a residual herbicide applied pre-emergence followed by a contact herbicide applied post-emergence.The second approach (b) was examined in a series of field experiments from 1967 to 1969, on light to medium sandy loam soils in the West Midlands. Comparisons were made between pre-emergence application of lenacil and pyrazon, pre-emergence application of lenacil and pyrazon followed by post-emergence application of phenmedipham, and post-emergence application of phenmedipham for weed control in sugar beet.Under dry soil conditions in April 1967, lenacil and pyrazon controlled only about 40% of the annual weeds, but in 1968 and 1969, when moist soil conditions predominated in April and May, lenacil and pyrazon controlled 80–95% of the annual weeds.Phenmedipham applied post-emergence gave about 90% control of annual broadleaved weeds initially, but it seemed unlikely that a single application of this herbicide would provide satisfactory weed control in sugar beet.In each of the 3 years 1967–9, a split application of a soil-acting residual herbicide (pro-emergence) followed by phenmedipham (post-emergence) gave outstanding weed control and enabled sugar beet to be established and grown until mid-June at least, in a near weed-free environment. It was concluded that this technique was the most effective for weed control in sugar beet on light to medium sandy loam soils in the West Midlands.


HortScience ◽  
2004 ◽  
Vol 39 (5) ◽  
pp. 1143-1147 ◽  
Author(s):  
Geungjoo Lee ◽  
Robert N. Carrow ◽  
Ronny R. Duncan

Seashore paspalum (Paspalum vaginatum Swartz) is a warm season turfgrass that survives in sand dunes along coastal sites and around brackish ponds or estuaries. The first exposure to salt stress normally occurs in the rhizosphere for persistent turfgrass. Information on diversity in salinity tolerance of seashore paspalums is limited. From Apr. to Oct. 1997, eight seashore paspalum ecotypes (SI 94-1, SI 92, SI 94-2, `Sea Isle 1', `Excalibur', `Sea Isle 2000', `Salam', `Adalayd') and four bermudagrass (Cynodon dactylon × C. transvaalensis Butt-Davy) cultivars (`Tifgreen', `Tifway', `TifSport', `TifEagle') were investigated for levels of salinity tolerance based on root and verdure responses in nutrient/sand culture under greenhouse conditions. Different salt levels (1.1 to 41.1 dS·m-1) were created with sea salt. Measurements were taken for absolute growth at 1.1 (ECw0; electrical conductivity of water), 24.8 (ECw24), 33.1 (ECw 32), and 41.1 dS·m-1 (ECw40), threshold ECw, and ECw for 25% growth reduction from ECw0 growth (ECw25%). Varying levels of salinity tolerance among the 12 entries were observed based on root, verdure, and total plant yield. Ranges of root characteristics were inherent growth (ECw0) = 0.20 to 0.61 g dry weight (DW); growth at ECw24 = 0.11 to 0.47 g; growth at ECw32 = 0.13 to 0.50 g; growth at ECw40 = 0.13 to 0.50 g; threshold ECw = 3.1 to 9.9 dS·m-1; and ECw25% = 23 to 39 dS·m-1. For verdure, ranges were inherent growth at ECw0 = 0.40 to 1.07 g DW; growth at ECw40 = 0.31 to 0.84 g; and ratio of yields at ECw40 to ECw0 = 0.54 to 1.03. Ranges for total growth were inherent growth at ECw0 = 0.72 to 2.66 g DW; growth at ECw24 = 0.55 to 2.23 g; growth at ECw32 = 0.54 to 2.08 g; growth at ECw40 = 0.52 to 1.66 g; threshold ECw = 2.3 to 12.8 dS·m-1; and ECw25% = 16 to 38 dS·m-1. Significant salinity tolerance differences existed among seashore paspalums and bermudagrasses as demonstrated by root, verdure, and total growth measurements. When grasses were ranked across all criteria exhibiting a significant F test based on root, verdure, and total growth, the most tolerant ecotypes were SI 94-1 and SI 92. Salinity tolerance of bermudagrass cultivars was relatively lower than SI 94-1 and SI 92. For assessing salinity tolerance, minimum evaluation criteria must include absolute growth at ECw0 and ECw 40 dS·m-1 for halophytes, but using all significant parameters of root and total yield is recommended for comprehensive evaluation.


Weed Science ◽  
1979 ◽  
Vol 27 (4) ◽  
pp. 444-449 ◽  
Author(s):  
J. H. Miller ◽  
C. H. Carter ◽  
R. H. Garber ◽  
J. E. DeVay

For 3 yr, herbicide treatments of preplant trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine), postemergence diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea], both herbicides, or none were superimposed on cotton (Gossypium hirsutumL. ‘Acala SJ-2′) grown on beds centered at 102 cm using a single row or two rows spaced 28 cm apart. Cotton stand, after thinning, was 5.1 plants/m in each cotton row. Herbicides controlled annual weeds regardless of planting pattern. Cultivation, without herbicides, controlled annual grass weeds much better in cotton grown in single rows than in double rows. Preplant applications of trifluralin did not influence populations of cotton plants, regardless of row pattern. Single- and double-row plots treated with trifluralin always yielded more than untreated double rows. In two of three seasons, however, single-row plots without herbicides yielded as much as those treated with trifluralin. The lower yields in the double-row cotton were associated with reduced annual grass control especially in plots not treated with trifluralin. Weed control treatments or planting patterns did not influence the occurrence ofPythium ultimumTrow orRhizoctonia solaniKühn on cotton seedlings. The presence ofThielaviopsis basicola(Berk & Br.) Ferr. on cotton seedlings was not influenced by planting pattern but was increased by trifluralin in the third year of the study. Percentage of cotton plants with symptoms of verticillium wilt (Verticillium dahliaeKleb.) was not influenced by weed control treatments, but the percentage of diseased plants was higher in single-row than in double-row planting patterns. We attribute this response to fewer plants per hectare in single rows compared to double rows.


Weed Science ◽  
1981 ◽  
Vol 29 (5) ◽  
pp. 610-615 ◽  
Author(s):  
T. R. Murphy ◽  
B. J. Gossett

Field studies were conducted at Florence and Clemson, South Carolina to measure the influence of soybean [Glycine max(L.) Merr.] planting dates on the length of early-season weed control needed to prevent yield reductions, the rate of shade development, and suppression of annual weeds by soybeans. The rate of shade development was similar for both planting dates during the 9- to 11-week period after planting for Florence and Clemson, respectively. The period of weed-free maintenance required to prevent soybean yield reductions was not affected by planting dates. With cultivation between rows, early- and late-planted soybeans required 3 weeks of weed-free maintenance to achieve maximum yields. Lower weed weights resulted from late than early soybean plantings. At Clemson, 3 weeks of weed-free maintenance for early and late plantings reduced weed weights 97 and 91%, respectively. Weed weights at Florence were reduced 85% with 3 weeks of weed-free maintenance for the late plantings, whereas 5 weeks were required to reduce weed weights 88% for early plantings.


Sign in / Sign up

Export Citation Format

Share Document