Integrating Irrigation, Tillage, and Herbicides for Weed Control in Dry Bean

2014 ◽  
Vol 28 (3) ◽  
pp. 479-485 ◽  
Author(s):  
Robert G. Wilson ◽  
Gustavo M. Sbatella

Field trials were conducted from 2010 through 2012 to evaluate the integration of three factors: overhead irrigation after planting great northern dry bean; three methods of seedbed preparation: no-tillage, one or two diskings; and eight weed control treatments on dry bean development and weed control. The previous crop each year was corn. Overhead irrigation with 13 mm of water immediately after herbicide application and planting in early June did not improve or reduce herbicide efficacy but where herbicides were not utilized, irrigation increased weed emergence. Soil crusting increased in 2 of 3 yr when soil was disked at a 20-cm depth before planting. Crop injury from herbicides applied PRE increased when soil crusting occurred. No tillage before planting reduced crop injury from herbicides in 2010 and 2011 and weed density in 2012. Dry bean injury was minimal from herbicides applied PRE except for flumioxazin, which reduced crop density in 2011 and 2012. Imazamox plus bentazon applied POST caused early-season dry bean injury in 2 of 3 yr and resulted in a reduction in crop seed yield compared to dimethenamid-P or halosulfuron applied PRE. As producers move away from intensive tillage before planting to reduced tillage or no-tillage production systems, the results of this experiment show that dimethenamid-P, halosulfuron, pendimethalin, andS-metolachlor can be utilized PRE to provide acceptable weed control and crop selectivity. Although flumioxazin applied PRE reduced plant density, Great Northern dry bean yields were not affected by the loss of plant stand.

Weed Science ◽  
2016 ◽  
Vol 64 (3) ◽  
pp. 531-539 ◽  
Author(s):  
Zubeyde Filiz Arslan ◽  
Martin M. Williams ◽  
Roger Becker ◽  
Vincent A. Fritz ◽  
R. Ed Peachey ◽  
...  

Atrazine has been the most widely used herbicide in North American processing sweet corn for decades; however, increased restrictions in recent years have reduced or eliminated atrazine use in certain production areas. The objective of this study was to identify the best stakeholder-derived weed management alternatives to atrazine in processing sweet corn. In field trials throughout the major production areas of processing sweet corn, including three states over 4 yr, 12 atrazine-free weed management treatments were compared to three standard atrazine-containing treatments and a weed-free check. Treatments varied with respect to herbicide mode of action, herbicide application timing, and interrow cultivation. All treatments included a PRE application of dimethenamid. No single weed species occurred across all sites; however, weeds observed in two or more sites included common lambsquarters, giant ragweed, morningglory species, velvetleaf, and wild-proso millet. Standard treatments containing both atrazine and mesotrione POST provided the most efficacious weed control among treatments and resulted in crop yields comparable to the weed-free check, thus demonstrating the value of atrazine in sweet corn production systems. Timely interrow cultivation in atrazine-free treatments did not consistently improve weed control. Only two atrazine-free treatments consistently resulted in weed control and crop yield comparable to standard treatments with atrazine POST: treatments with tembotrione POST either with or without interrow cultivation. Additional atrazine-free treatments with topramezone applied POST worked well in Oregon where small-seeded weed species were prevalent. This work demonstrates that certain atrazine-free weed management systems, based on input from the sweet corn growers and processors who would adopt this technology, are comparable in performance to standard atrazine-containing weed management systems.


Weed Science ◽  
1989 ◽  
Vol 37 (2) ◽  
pp. 239-249 ◽  
Author(s):  
Michael D. Johnson ◽  
Donald L. Wyse ◽  
William E. Lueschen

The objectives of this research were to compare the weed control efficacy of liquid, granular, and microencapsulated formulations of preemergence herbicides in moldboard plow, chisel plow, ridge tillage, and no-tillage corn and soybean production systems, and to determine whether herbicide formulation can influence herbicide interception and retention on surface corn residue. Common lambsquarters populations were threefold higher in corn than in soybeans. A mixed population of giant foxtail and green foxtail was highest in the chisel plow and lowest in the ridge tillage system as were total weed numbers. Percent weed control was not influenced by tillage when considered across all herbicide treatments. Weed control was not influenced by herbicide formulation in the moldboard plow, chisel plow, or ridge tillage systems, but granular herbicide applications provided better weed control than liquid applications in the no-tillage system and across various rates of corn residue in an experiment with no tillage variables. Two- to threefold less granular-applied herbicide was intercepted by surface corn residue at the time of application compared to liquid-applied herbicide. Increasing amounts of postapplication rainfall decreased the difference among formulations with regard to both total soil reception of the herbicide and resultant weed control. There was no consistent advantage for the microencapsulated formulation over the other herbicide formulations. Surface corn residue controlled many weeds without the aid of a herbicide and actually contributed to overall weed control even where herbicides were applied. This suggests that the binding of preemergence herbicides on surface crop residue may not be the cause of weed control failures in reduced-tillage systems as is often assumed to be the case.


1985 ◽  
Vol 65 (2) ◽  
pp. 249-259
Author(s):  
R. L. KUSHWAHA ◽  
W. B. REED

In an effort to minimize the effect of wind on the placement of herbicide granules during simultaneous application-incorporation while seeding with a discer, a pneumatic conveying and dispersion system was designed, fabricated and tested. Nozzles designed for the system produced a uniform granule distribution pattern over a width of 300 mm. The system was mounted on a 2.8-m-wide discer for field evaluation. Field tests were conducted to determine the uniformity of incorporation at different soil depths under windy conditions. Bio-assay field trials were conducted over a period of 2 yr to evaluate crop injury and weed control with the pneumatic system. It was compared with other currently used methods of granular and liquid triallate application. The pneumatic system provided good weed control, no apparent crop injury and no reduction in crop yield. Key words: Pneumatic application, discer, herbicide granules


2011 ◽  
Vol 25 (3) ◽  
pp. 459-465 ◽  
Author(s):  
G. J. Evans ◽  
R. R. Bellinder ◽  
R. R. Hahn

Vinegar can supplement the existing intrarow weed control options of organic farmers. However, there are two primary limitations to its use in vegetable crops. First, it is costly. Second, vinegar applications that contact the crop can cause injury and yield loss. The aim of this research was to use vinegar to control intrarow weeds in bell pepper and broccoli in a way that product costs would be reduced and crop injury would be minimized. Banded applications were shielded and directed below the crop canopy to reduce weed control costs and minimize contact with crop foliage. Organic paints applied to crop stems were evaluated as potential physical barriers to crop stem injury. Four field trials were conducted in 2009, two in transplanted bell pepper and two in transplanted broccoli. A single application of 200-grain vinegar (20% acetic acid) at 700 L ha−1was applied when weeds were in the cotyledon to six-leaf stage. Applications were made to crops with the lower stems coated in one of two stem protectants, or left uncoated. Hand-weeded and weedy treatments were included for comparison. One day after vinegar application, in-row weed control was 100% in both pepper trials and greater than 96% in the broccoli trials. Two weeks after application, 75% fewer weeds germinated in the vinegar-treated areas compared with the areas that were hand weeded. Neither stem protectant prevented crop injury. Despite pepper foliar injury of less than 5%, stem injury 2 wk after application contributed to a measurable yield reduction. Broccoli injury was limited to instances where overspray contacted the crop canopy. With vinegar, high levels of weed control and the extended duration of that control relative to hand weeding could facilitate improved organic intrarow weed control. However, crop injury must be reliably reduced. Alternative stem protectants may merit evaluation.


2006 ◽  
Vol 20 (4) ◽  
pp. 1023-1029 ◽  
Author(s):  
Pamela J.S. Hutchinson ◽  
Brent R. Beutler ◽  
Daniel M. Hancock

Sulfentrazone was applied POST at 13, 26, or 53 g ai/ha alone or in combination with metribuzin at 280 or 420 g ai/ha in field trials conducted with ‘Russet Burbank’ potatoes in 2002 to 2004. Sulfentrazone alone provided less than 84% redroot pigweed, common lambsquarters, and kochia control, although control usually improved to 90% or greater when metribuzin was included. Hairy nightshade control reached 90% only when the highest rates of both herbicides were applied in combination. Sulfentrazone alone did not provide any volunteer oat control, whereas control was 85% when the highest metribuzin rate was included. Potato crop injury, consisting of chlorosis, interveinal blackening of the leaves, eventual necrosis, leaf malformation, and plant stunting, increased as the sulfentrazone rate increased. In contrast, injury decreased as metribuzin rate increased from 0 to 420 g/ha, when averaged across sulfentrazone rates. Reduction in injury levels and increased weed control translated to improved tuber yields as metribuzin rate increased. However, when sulfentrazone was combined with the highest metribuzin rate, potato injury was still relatively high at 26 and 18% at 1 and 4 wk after treatment, and acceptance of sulfentrazone applied POST with metribuzin by potato growers is unlikely.


2020 ◽  
Vol 29 (1) ◽  
pp. 25-33
Author(s):  
Goran Malidža ◽  
Mirjana Vasić ◽  
Miloš Rajković ◽  
Goran Bekavac

Due to the narrow range of available herbicides, weeds are one of the limiting factors for intercropping of dry bean and maize. Various benefits of this production method have been confirmed by the results of many authors. The aim of this study was to investigate the possibility of using a cycloxydim-tolerant maize hybrid to expand the ability of weed control in intercroping systems with bean. Three-year field trials were conducted from 2015 to 2017, at the Institute of Field and Vegetable Crops in the vicinity of Novi Sad. Cycloxydim-tolerant maize and dry bean were sown mechanically in alternating strips, with one strip consisting of 4 rows of maize and the other strip containing 6 rows of bean. Combinations of herbicides based on dimethenamid-P, linuron, bentazone and cycloxydim were studied. The effect of herbicides on the number of weeds, fresh weed mass and grain yield of bean and maize was evaluated. No phytotoxicity of the herbicides was observed on the crops, indicating the safety of their use in this production system. The most common weeds were Chenopodium album, Datura stramonium and Sorghum halepense developed from rhizomes. Herbicides had a significant effect in reducing the abundance and fresh mass of the above-ground weed parts. A special contribution of the results obtained is the unique ability to control S. halepense using the cycloxydim-based product. Owing to the above-mentioned possibility, a significant reduction in the number and mass of S. halepense shoots developed from rhizomes was achieved (100% in 2015 and 2016, and >90% in 2017). The results of our trials confirm the contribution of the extension of the choice of herbicides with cycloxydim in this system of intercropping with dry bean and cycloxydim-tolerant maize.


2009 ◽  
Vol 23 (1) ◽  
pp. 188-190
Author(s):  
Eric P. Prostko ◽  
Timothy L. Grey ◽  
Jerry W. Davis

Field trials were conducted in Georgia in 2007 to 2008 to evaluate the tolerance of three imidazolinone-resistant sunflower cultivars to POST applications of imazapic. There was no interaction between sunflower cultivar and herbicide treatment. When averaged over sunflower cultivars, imazapic, at 70 and 140 g ai/ha and applied at 30 d after planting, had no effect on sunflower above-ground biomass, plant height, seed-heads per meter row, and seed-head weights. Sunflower response to imazapic was similar to that of imazamox. Imazapic could be used in imidazolinone-resistant sunflower production systems without risk of unacceptable crop injury.


2012 ◽  
Vol 92 (2) ◽  
pp. 297-302 ◽  
Author(s):  
Nader Soltani ◽  
Christy Shropshire ◽  
Peter H. Sikkema

Soltani, N., Shropshire, C. and Sikkema, P. H. 2012. Co-application of glyphosate plus an insecticide or fungicide in glyphosate-resistant soybean. Can. J. Plant Sci. 92: 297–302. Six field trials were conducted from 2008 to 2010 in Ontario to evaluate soybean injury and weed control efficacy with glyphosate tankmixed with various insecticides or fungicides. There was minimal visual injury (less than 4%) in glyphosate-resistant soybean and no adverse effect on soybean height and yield when cyhalothrin-lambda (Matador®), dimethoate (Lagon®), imidacloprid/deltamethrin (Concept®), spirotetramat (Movento®), pyraclostrobin (Headline®), azoxystrobin (Quadris®), propiconazole (Tilt®), azoxystrobin/propiconazole (Quilt®), tebuconazole (Folicur®) and trifloxystrobin/propiconazole (Stratego®) were tankmixed with glyphosate. Velvetleaf, pigweed species, common ragweed, common lambsquarters and green foxtail control ranged from 91–97, 94–99, 92–99, 80–94 and 98–100%, respectively. However, there was no adverse effect on velvetleaf, pigweed, common ragweed, common lambsquarters and green foxtail control, density and dry weight when one of the insecticides or fungicides evaluated was tankmixed with glyphosate. Based on these results, glyphosate tankmixed with cyhalothrin-lambda, dimethoate, imidacloprid/deltamethrin, spirotetramat, pyraclostrobin, azoxystrobin, propiconazole, azoxystrobin/propiconazole, tebuconazole or trifloxystrobin/propiconazole causes minimal crop injury and has no adverse effect on weed control in glyphosate-resistant soybean under Ontario environmental conditions.


Weed Science ◽  
1980 ◽  
Vol 28 (1) ◽  
pp. 46-50 ◽  
Author(s):  
O. C. Burnside ◽  
G. A. Wicks ◽  
D. R. Carlson

Soybeans [Glycine max(L.) Merr.] and oats (Avena sativaL.) were grown in a rotation using reduced or no-tillage crop production systems at Lincoln, Nebraska, over a 4-yr period. Oat stubble was treated after harvest with 3.4 kg/ha of metribuzin [4-amino-6-tert-butyl-3-(methylthio)-as-triazin-5(4H)-one] to reduce the growth of late summer weeds. The following spring soybeans were planted directly into the undisturbed stubble or into a seedbed prepared by tandem discing. Three seedbed preparations, two soybean cultivars, and six preemergence weed control treatments were compared. Glyphosate [N-(phosphonomethyl)glycine] applied at 0.8 kg/ha or tandem discing were equally effective in producing a weed-free seedbed. Herbicides applied preemergence on soybeans were still necessary for the reduced tillage or no-tillage production systems if weeds were to be adequately controlled in soybeans without cultivation. Differences in seed-yield occurred between cultivars only when late summer rains benefited the later maturing ‘Williams' soybeans over earlier maturing ‘Wells'. With adequate weed control, soybeans and oats can be grown in a no-tillage, crop rotation, production system in eastern Nebraska to produce high yields with a minimum of labor and soil exposure.


2008 ◽  
Vol 88 (2) ◽  
pp. 373-378 ◽  
Author(s):  
Peter H Sikkema ◽  
Robert E Nurse ◽  
Tom Welacky ◽  
Allan S Hamill

A study was conducted at three locations in central-southwestern Ontario from 1996 to 1998 to determine if corn (Zea mays L.) productivity and weed control can be maintained when row spacing is narrowed, crop density is increased and herbicide rate is reduced. Post-emergence herbicides [(rimsulfuron + nicosulfuron) plus (dicamba + atrazine)] at four rates (full label rate (1×), 75% full rate (0.75×), 50% full rate (0.5×) and an untreated check) were tested at three corn row-spacings (38, 50, and 75 cm) and two plant densities (75 000 and 90 000 plants ha-1). Herbicide application at the 0.5× rate versus an untreated check still allowed for increased corn yield (8.3 vs. 4.9 t ha-1) and decreased weed dry weight (9.4 vs. 240.4 g m-2), weed plant density (11.0 vs. 52.6 plants m-2) and weed seed density (239 vs. 14 241 seeds m-2). Corn LAI was not affected by decreasing herbicide rate. In this study, increasing corn plant density and decreasing corn row spacing were not factors in reducing herbicide inputs in corn cropping systems in central-southwestern Ontario. Herbicide rate could be reduced by up to 50% while maintaining corn grain yield, weed density, weed dry weight, and the number of weed seeds entering into the soil seed bank. Implementation of these reduced rates will help to increase the economic and environmental sustainability of the Canadian field corn industry. Key words: Agricultural systems, crop yield, seeding rate, sustainability, weed biomass


Sign in / Sign up

Export Citation Format

Share Document