Current Nanotechnological Strategies for Effective Delivery of Bioactive Drug Molecules in the Treatment of Tuberculosis

Author(s):  
Mandeep Kaur ◽  
Tarun Garg ◽  
Goutam Rath ◽  
Amit Kumar Goyal
2015 ◽  
Vol 21 (22) ◽  
pp. 3076-3089 ◽  
Author(s):  
Tarun Garg ◽  
Goutam Rath ◽  
Rayasa Murthy ◽  
Umesh Gupta ◽  
Palakkod Vatsala ◽  
...  

2016 ◽  
Vol 142 ◽  
pp. 290-296 ◽  
Author(s):  
Jangsun Hwang ◽  
Eunwon Lee ◽  
Jieun Kim ◽  
Youngmin Seo ◽  
Kwan Hong Lee ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1929 ◽  
Author(s):  
Salman Ul Islam ◽  
Adeeb Shehzad ◽  
Muhammad Bilal Ahmed ◽  
Young Sup Lee

Although the global prevalence of neurological disorders such as Parkinson’s disease, Alzheimer’s disease, glioblastoma, epilepsy, and multiple sclerosis is steadily increasing, effective delivery of drug molecules in therapeutic quantities to the central nervous system (CNS) is still lacking. The blood brain barrier (BBB) is the major obstacle for the entry of drugs into the brain, as it comprises a tight layer of endothelial cells surrounded by astrocyte foot processes that limit drugs’ entry. In recent times, intranasal drug delivery has emerged as a reliable method to bypass the BBB and treat neurological diseases. The intranasal route for drug delivery to the brain with both solution and particulate formulations has been demonstrated repeatedly in preclinical models, including in human trials. The key features determining the efficacy of drug delivery via the intranasal route include delivery to the olfactory area of the nares, a longer retention time at the nasal mucosal surface, enhanced penetration of the drugs through the nasal epithelia, and reduced drug metabolism in the nasal cavity. This review describes important neurological disorders, challenges in drug delivery to the disordered CNS, and new nasal delivery techniques designed to overcome these challenges and facilitate more efficient and targeted drug delivery. The potential for treatment possibilities with intranasal transfer of drugs will increase with the development of more effective formulations and delivery devices.


Cancers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1666 ◽  
Author(s):  
Dasom Kim ◽  
Jangsun Hwang ◽  
Yonghyun Choi ◽  
Yejin Kwon ◽  
Jaehee Jang ◽  
...  

Liquid metals are being studied intensively because of their potential as a drug delivery system. Eutectic gallium–indium (EGaIn) alloy liquid metals have a low melting point, low toxicity, and excellent tissue permeability. These properties may enable them to be vascular embolic agents that can be deformed by light or heat. In this study, we developed EGaIn particles that can deliver anticancer drugs to tumor cells in vitro and change their shapes in response to external stimuli. These particles were prepared by sonicating a solution containing EGaIn and amphiphilic lipids. The liquid metal (LM)/amphiphilic lipid (DSPC, 1,2-distearoyl-sn-glycero-3-phosphocholin) particles formed a vehicle for doxorubicin, an anticancer drug, which was released (up to 50%) when the shape of the particles was deformed by light or heat treatment. LM/DSPC particles are non-toxic and LM/DSPC/doxorubicin particles have anticancer effects (resulting in a cell viability of less than 50%). LM/DSPC/doxorubicin particles were also able to mimic blood vessel embolisms by modifying their shape using precisely controlled light and heat in engineered microchannels. The purpose of this study was to examine the potential of EGaIn materials to treat tumor tissues that cannot be removed by surgery.


2021 ◽  
Vol 19 ◽  
Author(s):  
Pratiksha Prabhu ◽  
Trinette Fernandes ◽  
Mansi Damani ◽  
Pramila Chaubey ◽  
Shridhar Narayanan ◽  
...  

: Tuberculosis (TB) is an ancient chronic disease caused by the bacillus Mycobacterium tuberculosis, which has affected mankind for more than 4,000 years. Compliance with the standard conventional treatment can assure recovery from tuberculosis, but emergence of drug resistant strains pose a great challenge for effective management of tuberculosis. The process of discovery and development of new therapeutic entities with better specificity and efficacy is unpredictable and time consuming. Hence, delivery of pre-existing drugs with improved targetability is the need of the hour. Enhanced delivery and targetability can ascertain improved bioavailability, reduced toxicity, decreased frequency of dosing and therefore better patient compliance. Nanoformulations are being explored for effective delivery of therapeutic agents, however optimum specificity is not guaranteed. In order to achieve specificity, ligands specific to receptors or cellular components of macrophage and Mycobacteria can be conjugatedto nanocarriers. This approach can improve localization of existing drug molecules at the intramacrophageal site where the parasites reside, improve targeting to the unique cell wall structure of Mycobacterium or improve adhesion to epithelial surface of intestine or alveolar tissue (lectins). Present review focuses on the investigation of various ligands like Mannose, Mycolic acid, Lectin, Aptamers etc. installed nanocarriers that are being envisaged for targeting antitubercular drugs.


2020 ◽  
Author(s):  
Shruti Koulgi ◽  
Vinod Jani ◽  
Mallikarjunachari Uppuladinne ◽  
Uddhavesh Sonavane ◽  
Asheet Kumar Nath ◽  
...  

<p>The COVID-19 pandemic has been responsible for several deaths worldwide. The causative agent behind this disease is the Severe Acute Respiratory Syndrome – novel Coronavirus 2 (SARS-nCoV2). SARS-nCoV2 belongs to the category of RNA viruses. The main protease, responsible for the cleavage of the viral polyprotein is considered as one of the hot targets for treating COVID-19. Earlier reports suggest the use of HIV anti-viral drugs for targeting the main protease of SARS-CoV, which caused SARS in the year 2002-03. Hence, drug repurposing approach may prove to be useful in targeting the main protease of SARS-nCoV2. The high-resolution crystal structure of 3CL<sup>pro</sup> (main protease) of SARS-nCoV2 (PDB ID: 6LU7) was used as the target. The Food and Drug Administration (FDA) approved and SWEETLEAD database of drug molecules were screened. The apo form of the main protease was simulated for a cumulative of 150 ns and 10 μs open source simulation data was used, to obtain conformations for ensemble docking. The representative structures for docking were selected using RMSD-based clustering and Markov State Modeling analysis. This ensemble docking approach for main protease helped in exploring the conformational variation in the drug binding site of the main protease leading to efficient binding of more relevant drug molecules. The drugs obtained as best hits from the ensemble docking possessed anti-bacterial and anti-viral properties. Small molecules with these properties may prove to be useful to treat symptoms exhibited in COVID-19. This <i>in-silico</i> ensemble docking approach would support identification of potential candidates for repurposing against COVID-19.</p>


Author(s):  
Pramod Dhakal ◽  
Ankit a Achary ◽  
Vedamurthy Joshi

Bioenhancers are drug facilitator which do not show the typical drug activity but in combination to enhance the activity of other molecule in several way including increase the bioavailability of drug across the membrane, potentiating the drug molecules by conformational interaction, acting as receptor for drug molecules and making target cell more receptive to drugs and promote and increase the bioactivity or bioavailability or the uptake of drugs in combination therapy. The objective of the present study was to evaluate the antibacterial and activity of combination in Azadirachta indica extract with cow urine distillate and pepper extract against common pathogenic bacteria, a causative agent of watery diarrhea. It has been found that Indian indigenous cow urine and its distillate also possess bioenhancing ability. Bioenhancing role of cow urine distillate (CUD) and pepper extract was investigated on antibacterial activity of ethanol extract of Azadirachta indica. Antibacterial activity of ethanol extract neem alone and in combination with CUD and pepper extract were determined the ATCC strains against Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa and E-coli by cup plate diffusion method. Ethanol extract of neem has showed more effect on P. aeruginosa, E-coli than S. aureus and K. pneumonia with combination of CUD and pepper extract. CUD and pepper did not show any inhibition of test bacteria in low concentration. The antibacterial effect of combination of extract and CUD was higher than the inhibition caused by extract alone and is suggestive of the bioenhancing role of cow urine distillate and pepper. Moreover, inhibition of test bacteria was observed with less concentration of extract on combining with CUD


Sign in / Sign up

Export Citation Format

Share Document