alveolar tissue
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 25)

H-INDEX

20
(FIVE YEARS 3)

2021 ◽  
Vol 19 ◽  
Author(s):  
Pratiksha Prabhu ◽  
Trinette Fernandes ◽  
Mansi Damani ◽  
Pramila Chaubey ◽  
Shridhar Narayanan ◽  
...  

: Tuberculosis (TB) is an ancient chronic disease caused by the bacillus Mycobacterium tuberculosis, which has affected mankind for more than 4,000 years. Compliance with the standard conventional treatment can assure recovery from tuberculosis, but emergence of drug resistant strains pose a great challenge for effective management of tuberculosis. The process of discovery and development of new therapeutic entities with better specificity and efficacy is unpredictable and time consuming. Hence, delivery of pre-existing drugs with improved targetability is the need of the hour. Enhanced delivery and targetability can ascertain improved bioavailability, reduced toxicity, decreased frequency of dosing and therefore better patient compliance. Nanoformulations are being explored for effective delivery of therapeutic agents, however optimum specificity is not guaranteed. In order to achieve specificity, ligands specific to receptors or cellular components of macrophage and Mycobacteria can be conjugatedto nanocarriers. This approach can improve localization of existing drug molecules at the intramacrophageal site where the parasites reside, improve targeting to the unique cell wall structure of Mycobacterium or improve adhesion to epithelial surface of intestine or alveolar tissue (lectins). Present review focuses on the investigation of various ligands like Mannose, Mycolic acid, Lectin, Aptamers etc. installed nanocarriers that are being envisaged for targeting antitubercular drugs.


Author(s):  
Simon D. Pouwels ◽  
Laura Hesse ◽  
Xinhui Wu ◽  
Venkata Sita Rama Raju Allam ◽  
Daan van Oldeniel ◽  
...  

The receptor for advanced glycation end-products (RAGE) has been implicated in the pathophysiology of chronic obstructive pulmonary disease (COPD). However, it is still unknown whether RAGE directly contributes to alveolar epithelial damage and abnormal repair responses. We hypothesize that RAGE activation not only induces lung tissue damage but also hampers alveolar epithelial repair responses. The effects of the RAGE ligands LL-37 and HMGB1 were examined on airway inflammation and alveolar tissue damage in wild-type and RAGE deficient mice and on lung damage and repair responses using murine precision cut lung slices (PCLS) and organoids. Additionally, their effects were studied on the repair response of human alveolar epithelial A549 cells, using siRNA knockdown of RAGE and treatment with the RAGE inhibitor FPS-ZM1. We observed that intranasal installation of LL-37 and HMGB1, induces RAGE-dependent inflammation and severe alveolar tissue damage in mice within 6 hours, with stronger effects in a mouse strain susceptible for emphysema compared to a non-susceptible strain. In PCLS, RAGE inhibition reduced the recovery from elastase-induced alveolar tissue damage. In organoids, RAGE ligands reduced the organoid-forming efficiency and epithelial differentiation into pneumocyte-organoids. Finally, in A549 cells, we confirmed the role of RAGE in impaired repair responses upon exposure to LL-37. Together, our data indicate that activation of RAGE by its ligands LL-37 and HMGB1 induces acute lung tissue damage and that this impedes alveolar epithelial repair, illustrating the therapeutic potential of RAGE inhibitors for lung tissue repair in emphysema.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Dewa Ketut Meles ◽  
Imam Mustofa ◽  
Wurlina Wurlina ◽  
Suherni Susilowati ◽  
Suzanita Utama ◽  
...  

Since the damage to alveolar tissue due to cigarette smoke exposure (CSE) is lipid peroxidation, antioxidant treatment is needed. The red guava (Psidium guajava L.) fruit contains antioxidants derived from quercetin, lycopene, and vitamin C. This study aimed to determine the effect of red guava fruit extract (RGFE) on the alveolar tissue of rats exposed to cigarette smoke. The 25 rats (Rattus norvegicus) were divided into five groups. The control and T0 groups were only administered placebo, while T1, T2, and T3 groups were orally administered RGFE of 18.9, 37.8, and 56.7 mg/kg body weight daily for 44 days. The CSE dose of 20 suctions daily was conducted on T0, T1, T2, and T3 groups on days 15–44. On day 45, all rats were sacrificed for serum collection and histopathological lung slides with eosin-nigrosin staining. The result showed that CSE caused an increase p < 0.05 in malondialdehyde (MDA) levels, cell death, apoptosis, and necrosis percentages, congestion and thickening of alveolar septum tissue, and reduction in the alveolar diameter and alveolar number. Administration of RGFE suppressed those effects, and the highest dose of RGFE (T3) restored p > 0.05 MDA levels, percentage of apoptotic and necrosis, alveolar septal thickening, and alveolar diameter. However, the percentages of cell death, alveolar congestion, and the alveolar number were still worse p < 0.05 than in normal rats. It could be concluded that RGFE has proved relief and restoration of the alveolar tissue of rats exposed to cigarette smoke.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jingyi Li ◽  
Xiangqiong Meng ◽  
Lihan Wang ◽  
Yang Yu ◽  
Hongxian Yu ◽  
...  

Abstract Background Yaks have a strong adaptability to the plateau environment, which can be attributed to the effective oxygen utilization rate of their lung tissue. Elastic fibre confers an important adaptive structure to the alveolar tissues in yaks. However, little research has been focused on the structural development of lung tissues and the expression levels of elastic fibres in yaks after birth. Therefore, this study aimed to investigate the morphological changes of elastic fibers and expression profiles of fibre-formation genes in yak lungs at different growth stages and the relationship between these changes and plateau adaptation. Results Histological staining was employed to observe the morphological changes in the lung tissue structure of yaks at four different ages: 1 day old, 30 days old, 180 days old and adult. There was no significant difference in the area of a single alveolus between the 1-day-old and 30-day-old groups (P-value > 0.05). However, the single alveolar area was gradually increased with an increase in age (P-value < 0.05). Elastic fibre staining revealed that the amount of elastic fibres in alveolar tissue was increased significantly from the ages of 30 days to 180 days (P-value < 0.05) and stabilized during the adult stage. Transcriptome analysis indicated that the highest levels of differentially expressed genes were found between 30 days of age and 180 days of age. KEGG analysis showed that PI3K-Akt signalling pathway and MAPK pathway, which are involved in fibre formation, accounted for the largest proportion of differentially expressed genes between 30 days of age and 180 days of age. The expression levels of 36 genes related to elastic fibre formation and collagen fibre formation were also analysed, and most of these genes were highly expressed in 30-day-old and 180-day-old yaks. Conclusions The content of elastic fibres in the alveolar tissue of yaks increases significantly after birth, but this change occurs only from 30 days of age to 180 days of age. Our study indicates that elastic fibres can improve the efficiency of oxygen utilization in yaks under harsh environmental conditions.


Author(s):  
Dennis MLW Kruk ◽  
Marissa Wisman ◽  
Harold G de Bruin ◽  
Monique E Lodewijk ◽  
Danique J Hof ◽  
...  

Mesenchymal stromal cells (MSCs) may provide crucial support in the regeneration of destructed alveolar tissue (emphysema) in COPD. We hypothesized that lung-derived MSCs (LMSCs) from emphysema patients are hampered in their repair capacity, either intrinsically or due to their interaction with the damaged micro-environment. LMSCs were isolated from lung tissue of controls and severe emphysema patients, and characterized at baseline. Additionally, LMSCs were seeded onto control and emphysematous decellularized lung tissue scaffolds and assessed for deposition of extracellular matrix (ECM). We observed no differences in surface markers, differentiation/proliferation potential and expression of ECM genes between control- and COPD-derived LMSCs. Notably, COPD-derived LMSCs displayed lower expression of FGF10 and HGF mRNA, and HGF and decorin protein. When seeded on control decellularized lung tissue scaffolds, control and COPD-derived LMSCs showed no differences in engraftment, proliferation or survival within 2 weeks, with similar ability to deposit new matrix on the scaffolds. Moreover, LMSC numbers and ability to deposit new matrix was not compromised on emphysematous scaffolds. Collectively, our data show that LMSCs from COPD patients compared to controls show less expression of FGF10 mRNA, HGF mRNA and protein and decorin protein, while other features including the mRNA expression of various ECM molecules are unaffected. Furthermore, COPD-derived LMSCs are capable of engraftment, proliferation and functioning on native lung tissue scaffolds. The damaged, emphysematous micro-environment as such does not hamper the potential of LMSCs. Thus, specific intrinsic deficiencies in growth factor production by diseased LMSCs may contribute to impaired alveolar repair in emphysema.


2021 ◽  
Vol 12 (1) ◽  
pp. e11-e11
Author(s):  
Giovanna Rodrigues de Carvalho ◽  
Wictor Nogueira Rodrigues ◽  
João Victor Melo Barboza ◽  
Cláudio de Góis Nery ◽  
Francine do Couto Lima Moreira ◽  
...  

Introduction: The aim of this article was to evaluate the efficacy of photobiomodulation therapy (PBMT) in the alveolar tissue healing process post-extraction using infrared thermography (IT). Case Presentation: A 36-year-old male patient had teeth extractions (18 and 28). Four PBMT sessions (660 nm; 2 J per tooth) were performed in the region of tooth 28 and recorded with thermographic images to compare the healing process, bilaterally. In the first two postoperative sessions, the temperature was higher (hyperradiant) on the left side (treated). After the third laser application, the left side was hyporradiant. In later session, the treated side became hyperradiant compared to the control side. The alveolus of tooth 28 showed more rapid healing than tooth 18 over a period of 60 days. Conclusion: IT can be used to detect the favorable effect of PBMT on accelerating the healing process in the alveolus within 60 days after the tooth extraction.


2021 ◽  
Vol 9 (2) ◽  
pp. 366
Author(s):  
Muriel Dresen ◽  
Josephine Schenk ◽  
Yenehiwot Berhanu Weldearegay ◽  
Désirée Vötsch ◽  
Wolfgang Baumgärtner ◽  
...  

Streptococcus suis is a common pathogen colonising the respiratory tract of pigs. It can cause meningitis, sepsis and pneumonia leading to economic losses in the pig industry worldwide. Cyclooxygenase-2 (COX-2) and its metabolites play an important regulatory role in different biological processes like inflammation modulation and immune activation. In this report we analysed the induction of COX-2 and the production of its metabolite prostaglandin E2 (PGE2) in a porcine precision-cut lung slice (PCLS) model. Using Western blot analysis, we found a time-dependent induction of COX-2 in the infected tissue resulting in increased PGE2 levels. Immunohistological analysis revealed a strong COX-2 expression in the proximity of the bronchioles between the ciliated epithelial cells and the adjacent alveolar tissue. The morphology, location and vimentin staining suggested that these cells are subepithelial bronchial fibroblasts. Furthermore, we showed that COX-2 expression as well as PGE2 production was detected following infection with two prevalent S. suis serotypes and that the pore-forming toxin suilysin played an important role in this process. Therefore, this study provides new insights in the response of porcine lung cells to S. suis infections and serves as a basis for further studies to define the role of COX-2 and its metabolites in the inflammatory response in porcine lung tissue during infections with S. suis.


2021 ◽  
Author(s):  
Kentaro Tojo ◽  
Natsuhiro Yamamoto ◽  
Takahiro Mihara ◽  
Miyo Abe ◽  
Takahisa Goto

Abstract Background: In severe cases of coronavirus disease (COVID-19), acute respiratory distress syndrome (ARDS) with alveolar tissue injury occurs. However, the time course and specific contributions of alveolar epithelial and endothelial injury to the pathogenesis of COVID-19 ARDS remain unclear.Methods: We evaluated the levels of a circulating alveolar epithelial injury marker (soluble receptor for advanced glycation end-products: sRAGE) and an endothelial injury marker (angiopoietin-2: ANG-2), along with an alveolar permeability indicator (surfactant protein D: SP-D) in 107 serum samples from nine patients with ARDS and eight without ARDS, all with COVID-19, admitted to Yokohama City University Hospital from January to July 2020. We compared the initial levels of these markers between ARDS and non-ARDS patients, and analysed the temporal changes of these markers in ARDS patients. Results: All the initial levels of sRAGE (median: 2680 pg/mL, IQR:1522–5076 vs. median 701 pg/mL, IQR:344–1148.0, p=0.0152), ANG-2 (median: 699 pg/mL, IQR: 410-2501 vs. median: 231 pg/mL, IQR: 64-584, p=0.0464), and SP-D (median: 17542 pg/mL, IQR: 7423-22979 vs. 1771 pg/mL, IQR: 458-204, p=0.0274) were significantly higher in the ARDS patients than in the non-ARDS patients. The peak sRAGE level in the ARDS patients was observed at the very early phase of disease progression (median: day 1, IQR: day 1–3.5). However, the peaks of ANG-2 (median: day 4, IQR: day 2.5–6) and SPD (median: day 5, IQR: day 3–7.5) were observed at a later phase. Moreover, the ANG-2 level was significantly correlated with the arterial oxygenation (p=0.030) and the SPD level (p=0.002), but the sRAGE level was not. Conclusion: Evaluation of circulating markers confirms that COVID-19 ARDS is characterised by severe alveolar tissue injury. Our data indicate that the endothelial injury, which continues for a longer period than the epithelial injury, seems to be the main contributor to alveolar barrier disruption. Targeting the endothelial injury may, thus, be a promising approach to overcome ARDS with COVID-19.


2021 ◽  
Author(s):  
Kentaro Tojo ◽  
Natsuhiro Yamamoto ◽  
Takahiro Mihara ◽  
Miyo Abe ◽  
Takahisa Goto

AbstractBackgroundIn severe cases of coronavirus disease (COVID-19), acute respiratory distress syndrome (ARDS) with alveolar tissue injury occurs. However, the time course and specific contributions of alveolar epithelial and endothelial injury to the pathogenesis of COVID-19 ARDS remain unclear.MethodsWe evaluated the levels of a circulating alveolar epithelial injury marker (soluble receptor for advanced glycation end-products: sRAGE) and an endothelial injury marker (angiopoietin-2: ANG-2), along with an alveolar permeability indicator (surfactant protein D: SP-D) in 107 serum samples from nine patients with ARDS and eight without ARDS, all with COVID-19. We compared the initial levels of these markers between ARDS and non-ARDS patients, and analysed the temporal changes of these markers in ARDS patients.FindingsAll the initial levels of sRAGE, ANG-2, and SP-D were significantly higher in the ARDS patients than in the non-ARDS patients. The peak sRAGE level in the ARDS patients was observed at the very early phase of disease progression. However, the peaks of ANG-2 and SPD were observed at a later phase. Moreover, the ANG-2 level was significantly correlated with the arterial oxygenation and the SPD level, but the sRAGE level was not.InterpretationEvaluation of circulating markers confirms that COVID-19 ARDS is characterised by severe alveolar tissue injury. Our data indicate that the endothelial injury, which continues for a longer period than the epithelial injury, seems to be the main contributor to alveolar barrier disruption. Targeting the endothelial injury may, thus, be a promising approach to overcome ARDS with COVID-19.FundingNone


2021 ◽  
Author(s):  
E.A. Rosado-Olivieri ◽  
B. Razooky ◽  
H.-H. Hoffmann ◽  
R. De Santis ◽  
C.M. Rice ◽  
...  

AbstractSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the global COVID-19 pandemic and the lack of therapeutics hinders pandemic control1–2. Although lung disease is the primary clinical outcome in COVID-19 patients1–3, how SARS-CoV-2 induces tissue pathology in the lung remains elusive. Here we describe a high-throughput platform to generate tens of thousands of self-organizing, nearly identical, and genetically matched human lung buds derived from human pluripotent stem cells (hPSCs) cultured on micropatterned substrates. Strikingly, in vitro-derived human lung buds resemble fetal human lung tissue and display in vivo-like proximo-distal coordination of alveolar and airway tissue differentiation whose 3D epithelial self-organization is directed by the levels of KGF. Single-cell transcriptomics unveiled the cellular identities of airway and alveolar tissue and the differentiation of WNThi cycling alveolar stem cells, a human-specific lung cell type4. These synthetic human lung buds are susceptible to infection by SARS-CoV-2 and endemic coronaviruses and can be used to track cell type-dependent susceptibilities to infection, intercellular transmission and cytopathology in airway and alveolar tissue in individual lung buds. Interestingly, we detected an increased susceptibility to infection in alveolar cells and identified cycling alveolar stem cells as targets of SARS-CoV-2. We used this platform to test neutralizing antibodies isolated from convalescent plasma that efficiently blocked SARS-CoV-2 infection and intercellular transmission. Our platform offers unlimited, rapid and scalable access to disease-relevant lung tissue that recapitulate key hallmarks of human lung development and can be used to track SARS-CoV-2 infection and identify candidate therapeutics for COVID-19.


Sign in / Sign up

Export Citation Format

Share Document