Alterations of immune function and gut microbiota with ageing. Can probiotic supplementation counteract these changes?

2009 ◽  
Vol 6 (5) ◽  
pp. 51-59
Author(s):  
Alberto Finamore ◽  
Marianna Roselli ◽  
Elena Mengheri
Nutrients ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 2048 ◽  
Author(s):  
Hanna Fjeldheim Dale ◽  
Stella Hellgren Rasmussen ◽  
Özgün Ömer Asiller ◽  
Gülen Arslan Lied

Irritable bowel syndrome (IBS) is a frequent functional gastrointestinal disorder, and alterations in the gut microbiota composition contributes to symptom generation. The exact mechanisms of probiotics in the human body are not fully understood, but probiotic supplements are thought to improve IBS symptoms through manipulation of the gut microbiota. The aim of this systematic review was to assess the latest randomized controlled trials (RCTs) evaluating the effect of probiotic supplementation on symptoms in IBS patients. A literature search was conducted in Medline (PubMed) until March 2019. RCTs published within the last five years evaluating effects of probiotic supplements on IBS symptoms were eligible. The search identified in total 35 studies, of which 11 met the inclusion criteria and were included in the systematic review. Seven studies (63.6%) reported that supplementation with probiotics in IBS patients significantly improved symptoms compared to placebo, whereas the remaining four studies (36.4%) did not report any significant improvement in symptoms after probiotic supplementation. Of note, three studies evaluated the effect of a mono-strain supplement, whereas the remaining eight trials used a multi-strain probiotic. Overall, the beneficial effects were more distinct in the trials using multi-strain supplements with an intervention of 8 weeks or more, suggesting that multi-strain probiotics supplemented over a period of time have the potential to improve IBS symptoms.


Author(s):  
Ralf Jäger ◽  
Alex E. Mohr ◽  
Katie C. Carpenter ◽  
Chad M. Kerksick ◽  
Martin Purpura ◽  
...  

AbstractPosition statement: The International Society of Sports Nutrition (ISSN) provides an objective and critical review of the mechanisms and use of probiotic supplementation to optimize the health, performance, and recovery of athletes. Based on the current available literature, the conclusions of the ISSN are as follows: Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit on the host (FAO/WHO).Probiotic administration has been linked to a multitude of health benefits, with gut and immune health being the most researched applications.Despite the existence of shared, core mechanisms for probiotic function, health benefits of probiotics are strain- and dose-dependent.Athletes have varying gut microbiota compositions that appear to reflect the activity level of the host in comparison to sedentary people, with the differences linked primarily to the volume of exercise and amount of protein consumption. Whether differences in gut microbiota composition affect probiotic efficacy is unknown.The main function of the gut is to digest food and absorb nutrients. In athletic populations, certain probiotics strains can increase absorption of key nutrients such as amino acids from protein, and affect the pharmacology and physiological properties of multiple food components.Immune depression in athletes worsens with excessive training load, psychological stress, disturbed sleep, and environmental extremes, all of which can contribute to an increased risk of respiratory tract infections. In certain situations, including exposure to crowds, foreign travel and poor hygiene at home, and training or competition venues, athletes’ exposure to pathogens may be elevated leading to increased rates of infections. Approximately 70% of the immune system is located in the gut and probiotic supplementation has been shown to promote a healthy immune response. In an athletic population, specific probiotic strains can reduce the number of episodes, severity and duration of upper respiratory tract infections.Intense, prolonged exercise, especially in the heat, has been shown to increase gut permeability which potentially can result in systemic toxemia. Specific probiotic strains can improve the integrity of the gut-barrier function in athletes.Administration of selected anti-inflammatory probiotic strains have been linked to improved recovery from muscle-damaging exercise.The minimal effective dose and method of administration (potency per serving, single vs. split dose, delivery form) of a specific probiotic strain depends on validation studies for this particular strain. Products that contain probiotics must include the genus, species, and strain of each live microorganism on its label as well as the total estimated quantity of each probiotic strain at the end of the product’s shelf life, as measured by colony forming units (CFU) or live cells.Preclinical and early human research has shown potential probiotic benefits relevant to an athletic population that include improved body composition and lean body mass, normalizing age-related declines in testosterone levels, reductions in cortisol levels indicating improved responses to a physical or mental stressor, reduction of exercise-induced lactate, and increased neurotransmitter synthesis, cognition and mood. However, these potential benefits require validation in more rigorous human studies and in an athletic population.


2008 ◽  
Vol 101 (5) ◽  
pp. 631-632 ◽  
Author(s):  
K. M. Tuohy

There is a growing awareness that the gut microbiota and an appropriately functioning immune system play an important role in maintaining human health. Recent population statistics have highlighted some worrying trends, specifically that there is a growing burden of immunological disease in Western populations, that Western populations are ageing, and that obesity, with its strong inflammatory component, is reaching epidemic proportions.


2013 ◽  
Author(s):  
Anne-Maria Pajari ◽  
Essi Paivarinta ◽  
Johanna Maukonen ◽  
Mikael Niku ◽  
Anu Heiman-Lindh ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Efrah I. Yousuf ◽  
Marilia Carvalho ◽  
Sara E. Dizzell ◽  
Stephanie Kim ◽  
Elizabeth Gunn ◽  
...  

2020 ◽  
Vol 21 (23) ◽  
pp. 9239
Author(s):  
Kara Sampsell ◽  
Desirée Hao ◽  
Raylene A. Reimer

Breast cancer is the most frequently diagnosed cancer in women worldwide. The disease and its treatments exert profound effects on an individual’s physical and mental health. There are many factors that impact an individual’s risk of developing breast cancer, their response to treatments, and their risk of recurrence. The community of microorganisms inhabiting the gastrointestinal tract, the gut microbiota, affects human health through metabolic, neural, and endocrine signaling, and immune activity. It is through these mechanisms that the gut microbiota appears to influence breast cancer risk, response to treatment, and recurrence. A disrupted gut microbiota or state of ‘dysbiosis’ can contribute to a biological environment associated with higher risk for cancer development as well as contribute to negative treatment side-effects. Many cancer treatments have been shown to shift the gut microbiota toward dysbiosis; however, the microbiota can also be positively manipulated through diet, prebiotic and probiotic supplementation, and exercise. The objective of this review is to provide an overview of the current understanding of the relationship between the gut microbiota and breast cancer and to highlight potential strategies for modulation of the gut microbiota that could lead to improved clinical outcomes and overall health in this population.


Sign in / Sign up

Export Citation Format

Share Document