scholarly journals Commentary on ‘Prebiotics, immune function, infection and inflammation: a review of the evidence’

2008 ◽  
Vol 101 (5) ◽  
pp. 631-632 ◽  
Author(s):  
K. M. Tuohy

There is a growing awareness that the gut microbiota and an appropriately functioning immune system play an important role in maintaining human health. Recent population statistics have highlighted some worrying trends, specifically that there is a growing burden of immunological disease in Western populations, that Western populations are ageing, and that obesity, with its strong inflammatory component, is reaching epidemic proportions.

2020 ◽  
Vol 8 (10) ◽  
pp. 1573
Author(s):  
Hugo de Vries ◽  
Mirelle Geervliet ◽  
Christine A. Jansen ◽  
Victor P. M. G. Rutten ◽  
Hubèrt van Hees ◽  
...  

Piglets are susceptible to infections in early life and around weaning due to rapid environmental and dietary changes. A compelling target to improve pig health in early life is diet, as it constitutes a pivotal determinant of gut microbial colonization and maturation of the host’s immune system. In the present study, we investigated how supplementation of yeast-derived β-glucans affects the gut microbiota and immune function pre- and post-weaning, and how these complex systems develop over time. From day two after birth until two weeks after weaning, piglets received yeast-derived β-glucans or a control treatment orally and were subsequently vaccinated against Salmonella Typhimurium. Faeces, digesta, blood, and tissue samples were collected to study gut microbiota composition and immune function. Overall, yeast-derived β-glucans did not affect the vaccination response, and only modest effects on faecal microbiota composition and immune parameters were observed, primarily before weaning. This study demonstrates that the pre-weaning period offers a ‘window of opportunity’ to alter the gut microbiota and immune system through diet. However, the observed changes were modest, and any long-lasting effects of yeast-derived β-glucans remain to be elucidated.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Laura Di Renzo ◽  
Paola Gualtieri ◽  
Francesca Pivari ◽  
Laura Soldati ◽  
Alda Attinà ◽  
...  

Abstract On December 12, 2019 a new coronavirus (SARS-CoV-2) emerged in Wuhan, China, triggering a pandemic of severe acute respiratory syndrome in humans (COVID-19). Today, the scientific community is investing all the resources available to find any therapy and prevention strategies to defeat COVID-19. In this context, immunonutrition can play a pivotal role in improving immune responses against viral infections. Immunonutrition has been based on the concept that malnutrition impairs immune function. Therefore, immunonutrition involves feeding enriched with various pharmaconutrients (Omega 3 Fatty Acids, Vitamin C, Arginine, Glutamine, Selenium, Zinc, Vitamin, E and Vitamin D) to modulate inflammatory responses, acquired immune response and to improve patient outcomes. In literature, significant evidences indicate that obesity, a malnutrition state, negatively impacts on immune system functionality and on host defense, impairing protection from infections. Immunonutrients can promote patient recovery by inhibiting inflammatory responses and regulating immune function. Immune system dysfunction is considered to increase the risk of viral infections, such as SARS-CoV-2, and was observed in different pathological situations. Obese patients develop severe COVID-19 sequelae, due to the high concentrations of TNF-α, MCP-1 and IL-6 produced in the meantime by visceral and subcutaneous adipose tissue and by innate immunity. Moreover, leptin, released by adipose tissue, helps to increase inflammatory milieu with a dysregulation of the immune response. Additionally, gut microbiota plays a crucial role in the maturation, development and functions of both innate and adaptive immune system, as well as contributing to develop obese phenotype. The gut microbiota has been shown to affect lung health through a vital crosstalk between gut microbiota and lungs, called the “gut-lung axis”. This axis communicates through a bi-directional pathway in which endotoxins, or microbial metabolites, may affect the lung through the blood and when inflammation occurs in the lung, this in turn can affect the gut microbiota. Therefore, the modulation of gut microbiota in obese COVID-19 patients can play a key role in immunonutrition therapeutic strategy. This umbrella review seeks to answer the question of whether a nutritional approach can be used to enhance the immune system’s response to obesity in obese patients affected by COVID-19.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Anshul Sinha ◽  
Corinne F. Maurice

The human gut is an extremely active immunological site interfacing with the densest microbial community known to colonize the human body, the gut microbiota. Despite tremendous advances in our comprehension of how the gut microbiota is involved in human health and interacts with the mammalian immune system, most studies are incomplete as they typically do not consider bacteriophages. These bacterial viruses are estimated to be as numerous as their bacterial hosts, with tremendous and mostly uncharacterized genetic diversity. In addition, bacteriophages are not passive members of the gut microbiota, as highlighted by the recent evidence for their active involvement in human health. Yet, how bacteriophages interact with their bacterial hosts and the immune system in the human gut remains poorly described. Here, we aim to fill this gap by providing an overview of bacteriophage communities in the gut during human development, detailing recent findings for their bacterial-mediated effects on the immune response and summarizing the latest evidence for direct interactions between them and the immune system. The dramatic increase in antibiotic-resistant bacterial pathogens has spurred a renewed interest in using bacteriophages for therapy, despite the many unknowns about bacteriophages in the human body. Going forward, more studies encompassing the communities of bacteria, bacteriophages, and the immune system in diverse health and disease settings will provide invaluable insight into this dynamic trio essential for human health.


2017 ◽  
Vol 17 (1) ◽  
pp. 35
Author(s):  
Fitri Elizabrth Br Hasibuan ◽  
Beivy Jonathan Kolondam

INTERAKSI ANTARA MIKROBIOTA USUS DAN SISTEM KEKEBALAN TUBUH MANUSIA Fitri Elizabrth Br Hasibuan dan Beivy Jonathan Kolondam ABSTRAK Sejumlah besar mikrobiota yang menghuni sistem pencernaan manusia memiliki peran penting dengan sistem kekebalan tubuh. Mikrobiota ini melaksanakan fungsi penting untuk fisiologi inang. Dalam tubuh manusia terdapat sekitar 10-100 triliun mikrobiota. Jumlah mikrobioma pada manusia paling banyak terdapat di usus, yaitu sekitar 100 triliun sel-sel mikrobiota yang terdiri dari 1.000 spesies berbeda. Mikrobiota adalah seluruh mikroba yang hidup di tubuh manusia yang terdiri dari bakteri, archae, virus, dan jamur yang pada umumnya hidup di setiap bagian tubuh manusia seperi kulit, vagina, hidung dan mulut. Bakteri pada mikrobioma manusia memiliki peran pada imunitas, nutrisi, dan perkembangan manusia. Di sini ditinjau tentang interaksi antara koloni mikroba dan sistem kekebalan tubuh dan implikasi dari temuan ini bagi kesehatan manusia. Kata-kata kunci: mikrobiota usus, sistem kekebalan tubuh, interaksi, bakteria.   INTERACTION BETWEEN GUT MICROBIOTA AND THE HUMAN IMMUNE SYSTEM ABSTRACT Most of the gut microbiota has important role in human immune system. These microbiota conducts important function for host physiology. The microbiota in the human body can range around 10 to 100 billion in number which contained 1,000 different species. Microbiota are the whole microbes living in human body such as bacteria, archaea, virus, and fungi, located on the skin or inside the vagina, nose and mouth. Bacteria in human microbiome has important roles in nutrition, immunity, and human development. This article discussed about interaction of microbes and immune system along with the implication of the interaction for human health. Keywords: Gut microbiota, immune system, interaction, bacteria


2013 ◽  
Vol 110 (S2) ◽  
pp. S1-S30 ◽  
Author(s):  
Ruud Albers ◽  
Raphaëlle Bourdet-Sicard ◽  
Deborah Braun ◽  
Philip C. Calder ◽  
Udo Herz ◽  
...  

Optimal functioning of the immune system is crucial to human health, and nutrition is one of the major exogenous factors modulating different aspects of immune function. Currently, no single marker is available to predict the effect of a dietary intervention on different aspects of immune function. To provide further guidance on the assessment and interpretation of the modulation of immune functions due to nutrition in the general population, International Life Sciences Institute Europe commissioned a group of experts from academia, government and the food industry to prepare a guidance document. A draft of this paper was refined at a workshop involving additional experts. First, the expert group defined criteria to evaluate the usefulness of immune function markers. Over seventy-five markers were scored within the context of three distinct immune system functions: defence against pathogens; avoidance or mitigation of allergy; control of low-grade (metabolic) inflammation. The most useful markers were subsequently classified depending on whether they by themselves signify clinical relevance and/or involvement of immune function. Next, five theoretical scenarios were drafted describing potential changes in the values of markers compared with a relevant reference range. Finally, all elements were combined, providing a framework to aid the design and interpretation of studies assessing the effects of nutrition on immune function. This stepwise approach offers a clear rationale for selecting markers for future trials and provides a framework for the interpretation of outcomes. A similar stepwise approach may also be useful to rationalise the selection and interpretation of markers for other physiological processes critical to the maintenance of health and well-being.


2020 ◽  
Vol 13 (2) ◽  
pp. 205-215 ◽  
Author(s):  
R. Sausset ◽  
M. A. Petit ◽  
V. Gaboriau-Routhiau ◽  
M. De Paepe

AbstractThe intestinal microbiota plays important roles in human health. This last decade, the viral fraction of the intestinal microbiota, composed essentially of phages that infect bacteria, received increasing attention. Numerous novel phage families have been discovered in parallel with the development of viral metagenomics. However, since the discovery of intestinal phages by d’Hérelle in 1917, our understanding of the impact of phages on gut microbiota structure remains scarce. Changes in viral community composition have been observed in several diseases. However, whether these changes reflect a direct involvement of phages in diseases etiology or simply result from modifications in bacterial composition is currently unknown. Here we present an overview of the current knowledge in intestinal phages, their identity, lifestyles, and their possible effects on the gut microbiota. We also gather the main data on phage interactions with the immune system, with a particular emphasis on recent findings.


2021 ◽  
Vol 9 (F) ◽  
pp. 784-793
Author(s):  
Musjaya Guli ◽  
Sri Winarsih ◽  
Wisnu Barlianto ◽  
Oski Illiandri ◽  
S. P. Sumarno

Probiotics are defined as live microorganisms which, when consumed in adequate quantities as food ingredients, provide health benefits to the host. Lactobacillus, Bifidobacterium, and Saccharomyces, are three probiotics that are intensively used as probiotics in humans and animals. Probiotics have beneficial effects on health when given adequate amounts. The concept of probiotics on human health, namely modulating the gut microbiota and its effect on the host. Probiotics play an important role in maintaining intestinal integrity through a number of different interactions, including changes in cytokine expression in the mucosa. Probiotics compete with intestinal pathogens for mucosal receptors, thereby increasing interepithelial resistance. Probiotics such as Lactobacillus casei sp GG strain was used as a prophylaxis that could increase the expression of epithelial mucin, thereby reducing the translocation of pathogenic bacteria. Abnormal local immune response is characterized by decreased secretion of IgA, thus allowing enterocyte attachment and local translocation of bacterial antigens, which are the main stimulation of pathological events. Colonic stasis can promote the growth of pathogenic bacteria which allows malignant porin bacterial strains to thrive. The gut microbiota has a major influence on human health. The microbial population has an important role in the host, such as the metabolic activity of probiotics producing energy and nutrient absorption, developing the host immune system, and preventing colonization and infection of pathogens. Lactobacillus reuteri is a hetero-fermentative bacterium that lives in the digestive tract of humans. L. reuteri has been used to treat infant necrotizing pseudomembrane. In this paper, the mechanism of L reuteri to increase host immunological response will be reviewed.


2020 ◽  
Vol 11 (SPL1) ◽  
pp. 753-757
Author(s):  
Anagha Gulhane ◽  
Shamli Hiware

It is the most unreliable truth that anybody can get infected by the COVID-19, and nobody can escape from the danger of getting tainted by the virus. Yet, the line of hope is that anyone and everyone can boost their resistance, thus avoid the risk of getting affected by the illness. The immunity of humans pulls down as they grow older. If their immune system is robust, them falling sick is feeble. If their resistance is weak, them getting ill is sound. Several factors affect the immune system and its ability, including its nourishment. A two-way connection between nutrition, infection and immunity presents. Changes in one part will affect the others part in our body that's the nature's rule. Well defined immune system quality which is present between each life phase may influence the type, generality and the degree of infections. At the same time, low nutrition to the body will decrease the immune function and expose the body to the danger of getting infected by infectious diseases. Different quantity of micronutrients is required for increasing the immunity power of our body. Generally the vitamins A,C,D,E,B2,B6,B12, iron, zinc and selenium.The deficiencies of micronutrients are acknowledged as a global health issue, and also low nutrition makes it prone to establishes the infections in the body.


2019 ◽  
Vol 26 (19) ◽  
pp. 3567-3583 ◽  
Author(s):  
Maria De Angelis ◽  
Gabriella Garruti ◽  
Fabio Minervini ◽  
Leonilde Bonfrate ◽  
Piero Portincasa ◽  
...  

Gut microbiota, the largest symbiont community hosted in human organism, is emerging as a pivotal player in the relationship between dietary habits and health. Oral and, especially, intestinal microbes metabolize dietary components, affecting human health by producing harmful or beneficial metabolites, which are involved in the incidence and progression of several intestinal related and non-related diseases. Habitual diet (Western, Agrarian and Mediterranean omnivore diets, vegetarian, vegan and gluten-free diets) drives the composition of the gut microbiota and metabolome. Within the dietary components, polymers (mainly fibers, proteins, fat and polyphenols) that are not hydrolyzed by human enzymes seem to be the main leads of the metabolic pathways of gut microbiota, which in turn directly influence the human metabolome. Specific relationships between diet and microbes, microbes and metabolites, microbes and immune functions and microbes and/or their metabolites and some human diseases are being established. Dietary treatments with fibers are the most effective to benefit the metabolome profile, by improving the synthesis of short chain fatty acids and decreasing the level of molecules, such as p-cresyl sulfate, indoxyl sulfate and trimethylamine N-oxide, involved in disease state. Based on the axis diet-microbiota-health, this review aims at describing the most recent knowledge oriented towards a profitable use of diet to provide benefits to human health, both directly and indirectly, through the activity of gut microbiota.


Sign in / Sign up

Export Citation Format

Share Document