scholarly journals Effects of water deficit on photosynthesis in wheat plants. II. The physiological basis for the difference in photosynthetic sensitivity to water stress among plant parts.

1987 ◽  
Vol 56 (4) ◽  
pp. 461-466 ◽  
Author(s):  
Hui-lian XU ◽  
Tohru YAMAGISHI ◽  
Atsuhiko KUMURA
2019 ◽  
Vol 99 (6) ◽  
pp. 955-957
Author(s):  
Sangu Angadi ◽  
Herb Cutforth ◽  
Brian McConkey

The difference between plant and air temperature (PT–AT) is a good indicator of water stress. PT–AT for chickpea was negatively correlated to water deficit and air temperature and positively correlated to wind; for wheat, PT–AT was positively correlated to water deficit, air temperature and solar energy; for canola, PT–AT was not correlated to the environment. Chickpea maintained positive turgor at the expense of water content and therefore more water was available for transpirational cooling. Wheat maintained water content at the expense of turgor and therefore there was little water available for transpirational cooling. For canola, PT–AT was affected by parameters other than environment.


2021 ◽  
Vol 6 (1) ◽  
pp. 1-9
Author(s):  
Habib SASSI ◽  
Oussama OUESLATI ◽  
Moncef BEN-HAMMOUDA

Little is known about the relation between water stress and the accumulation of phenolics in plant tissues. The present study aimed to investigate the effect of water stress and maturation on the production of total-phenolics (TP) by four barley (Hordeum vulgare L.) varieties (‘Manel’, ‘Martin’, ‘Rihane’, ‘Espérance’). During three phenological stages (S-8, S-10.5, S-11), following Feekes scale, whole barley plants were pulled out of the field and separated into roots, stems, and leaves. Water extracts were prepared from plant parts and their TP contents were determined by spectrophotometer. To determine periods of water deficit (WD) at field, climatic characterization of the region was carried out. TP accumulated in barley plant and its parts under the influence of water deficit essentially at S8, which coincided with barley spring growth. However, TP content decreased when WD became more pronounced at the following stages. This response may be explained, partially by the biosynthesis of lignin from free phenols when the plant approached maturity. Results suggest that water stress stimulates the synthesis and accumulation of TP in barley tissues during active growth periods (spring growth) at S-8. This response doesn’t persist until the critical periods of WD where barley maturity favors a decrease in TP content for all plant parts. Regardless of growth stage and WD, barley accumulates preferentially phenolics in above-ground plant parts. The evolution of phenolic accumulation under water stress showed the same trends for the tested barley varieties, indicating a genetic control of phenolic production and their partitioning across plant parts.


Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
M. Musse ◽  
G. Hajjar ◽  
N. Ali ◽  
B. Billiot ◽  
G. Joly ◽  
...  

Abstract Background Drought is a major consequence of global heating that has negative impacts on agriculture. Potato is a drought-sensitive crop; tuber growth and dry matter content may both be impacted. Moreover, water deficit can induce physiological disorders such as glassy tubers and internal rust spots. The response of potato plants to drought is complex and can be affected by cultivar type, climatic and soil conditions, and the point at which water stress occurs during growth. The characterization of adaptive responses in plants presents a major phenotyping challenge. There is therefore a demand for the development of non-invasive analytical techniques to improve phenotyping. Results This project aimed to take advantage of innovative approaches in MRI, phenotyping and molecular biology to evaluate the effects of water stress on potato plants during growth. Plants were cultivated in pots under different water conditions. A control group of plants were cultivated under optimal water uptake conditions. Other groups were cultivated under mild and severe water deficiency conditions (40 and 20% of field capacity, respectively) applied at different tuber growth phases (initiation, filling). Water stress was evaluated by monitoring soil water potential. Two fully-equipped imaging cabinets were set up to characterize plant morphology using high definition color cameras (top and side views) and to measure plant stress using RGB cameras. The response of potato plants to water stress depended on the intensity and duration of the stress. Three-dimensional morphological images of the underground organs of potato plants in pots were recorded using a 1.5 T MRI scanner. A significant difference in growth kinetics was observed at the early growth stages between the control and stressed plants. Quantitative PCR analysis was carried out at molecular level on the expression patterns of selected drought-responsive genes. Variations in stress levels were seen to modulate ABA and drought-responsive ABA-dependent and ABA-independent genes. Conclusions This methodology, when applied to the phenotyping of potato under water deficit conditions, provides a quantitative analysis of leaves and tubers properties at microstructural and molecular levels. The approaches thus developed could therefore be effective in the multi-scale characterization of plant response to water stress, from organ development to gene expression.


2021 ◽  
Vol 22 (7) ◽  
pp. 3347
Author(s):  
Mengyi Chen ◽  
Xiaoyang Zhu ◽  
Xiaojuan Liu ◽  
Caiyu Wu ◽  
Canye Yu ◽  
...  

Auxin response factors (ARFs) play important roles in various plant physiological processes; however, knowledge of the exact role of ARFs in plant responses to water deficit is limited. In this study, SlARF4, a member of the ARF family, was functionally characterized under water deficit. Real-time fluorescence quantitative polymerase chain reaction (PCR) and β-glucuronidase (GUS) staining showed that water deficit and abscisic acid (ABA) treatment reduced the expression of SlARF4. SlARF4 was expressed in the vascular bundles and guard cells of tomato stomata. Loss of function of SlARF4 (arf4) by using Clustered Regularly Interspaced Short Palindromic Repeats/Cas 9 (CRISPR/Cas 9) technology enhanced plant resistance to water stress and rehydration ability. The arf4 mutant plants exhibited curly leaves and a thick stem. Malondialdehyde content was significantly lower in arf4 mutants than in wildtype plants under water stress; furthermore, arf4 mutants showed higher content of antioxidant substances, superoxide dismutase, actual photochemical efficiency of photosystem II (PSII), and catalase activities. Stomatal and vascular bundle morphology was changed in arf4 mutants. We identified 628 differentially expressed genes specifically expressed under water deficit in arf4 mutants; six of these genes, including ABA signaling pathway-related genes, were differentially expressed between the wildtype and arf4 mutants under water deficit and unlimited water supply. Auxin responsive element (AuxRE) elements were found in these genes’ promoters indicating that SlARF4 participates in ABA signaling pathways by regulating the expression of SlABI5/ABF and SCL3, thereby influencing stomatal morphology and vascular bundle development and ultimately improving plant resistance to water deficit.


2021 ◽  
Author(s):  
Pablo Berríos ◽  
Abdelmalek Temnani ◽  
Susana Zapata ◽  
Manuel Forcén ◽  
Sandra Martínez-Pedreño ◽  
...  

<p>Mandarin is one of the most important Citrus cultivated in Spain and the sustainability of the crop is subject to a constant pressure for water resources among the productive sectors and to a high climatic demand conditions and low rainfall (about 250 mm per year). The availability of irrigation water in the Murcia Region is generally close to 3,500 m<sup>3</sup> per ha and year, so it is only possible to satisfy 50 - 60% of the late mandarin ETc, which requires about 5,500 m<sup>3</sup> per ha. For this reason, it is necessary to provide tools to farmers in order to control the water applied in each phenological phase without promoting levels of severe water stress to the crop that negatively affect the sustainability of farms located in semi-arid conditions. Stem water potential (SWP) is a plant water status indicator very sensitive to water deficit, although its measurement is manual, discontinuous and on a small-scale.  In this way, indicators measured on a larger scale are necessary to achieve integrating the water status of the crop throughout the farm. Thus, the aim of this study was to determine the sensitivity to water deficit of different hyperspectral single bands (HSB) and their relationship with the midday SWP in mandarin trees submitted to severe water stress in different phenological phases. Four different irrigation treatments were assessed: i) a control (CTL), irrigated at 100% of the ETc throughout the growing season to satisfy plant water requirements and three water stress treatments that were irrigated at 60% of ETc throughout the season – corresponding to the real irrigation water availability – except  during: ii) the end of phase I and beginning of phase II (IS IIa), iii) the first half of phase II (IS IIb) and iv) phase III of fruit growth (IS III), which irrigation was withheld until values of -1.8 MPa of SWP or a water stress integral of 60 MPa day<sup>-1</sup>. When these threshold values were reached, the spectral reflectance values were measured between 350 and 2500 nm using a leaf level spectroradiometer to 20 mature and sunny leaves on 4 trees per treatment. Twenty-four HVI and HSB were calculated and a linear correlation was made between each of them with SWP, where the ρ940 and ρ1250 nm single bands reflectance presented r-Pearson values of -0.78** and -0.83***, respectively. Two linear regression curves fitting were made: SWP (MPa) = -11.05 ∙ ρ940 + 7.8014 (R<sup>2</sup> =0.61) and SWP (MPa) = -13.043 ∙ ρ1250 + 8.9757 (R<sup>2</sup> =0.69). These relationships were obtained with three different fruit diameters (35, 50 and 65 mm) and in a range between -0.7 and -1.6 MPa of SWP. Results obtained show the possibility of using these single bands in the detection of water stress in adult mandarin trees, and thus propose a sustainable and efficient irrigation scheduling by means of unmanned aerial vehicles equipped with sensors to carry out an automated control of the plant water status and with a suitable temporal and spatial scale to apply precision irrigation.</p>


2021 ◽  
Vol 66 (1) ◽  
pp. 80-86
Author(s):  
Thin Pham Thi Thanh ◽  
Bang Cao Phi ◽  
Hai Nguyen Thi Thanh ◽  
Khuynh Bui The ◽  
Mai Nguyen Phuong ◽  
...  

Indian Lettuce (Lactuca indica L.) is a valuable medicinal herb but there are still no many researches about this plant. In this work, the physiological responses of Indian lettuce plants under water deficit conditions (5, 8, and 11 days of water stress) were investigated. The Indian lettuce wilted after 5 days of water stress (66.66%), the wilting rate increased after 8 (93.33%) and 11 days (100%) of water stress. The longer duration of water deficit stress caused the slower recovery of plants after rewatering. The water deficit stress caused a decrease in chlorophyll fluorescence, non-associated water content as well as flower formation of Indian lettuce. But the water deficit stress increases the associated water content and the flowering time of this plant.


1999 ◽  
Vol 29 (1) ◽  
pp. 79-79 ◽  
Author(s):  
Akio TSUCHIYA ◽  
Mario HIRAOKA

Várzea and terra-firme forests in the lower course of the Amazon were compared in terms of forest structure, wood volume increments and forest biomass. The wood volume of várzea forests was smaller than that of terra-firme forests, particularly when severe human intervention such as the cultivation of açaí palm occurred. The difference was even greater in the forest weight comparison because of the lower wood density of várzea trees. These trees are not directly influenced by water stress during the dry season, while late wood with a high density is formed in the terra-firme trees. The annual forest disappearance area due to firewood for tile factories was estimated to be about 276 ha on the island investigated, which had an area of 36,200 ha. Assuming that the forests are rotatively cultivated every 25 to 30 years, the total deforestation area is 6,870-6,948 ha in 25 years and 8,244~8,337 ha in 30 years. This result means that the balance between forest biomass and utilization is not in crisis, however, this balance might be lost as long as substitutive energy such as electricity is not supplied.


1955 ◽  
Vol 8 (4) ◽  
pp. 435 ◽  
Author(s):  
RF Williams ◽  
RE Shapter

A comparative study of growth and nutrition in barley and rye was made with two water treatments. The low-water treatment was of an intermittent character and harvests were made after each of the five periods of water stress. Yield reductions due to low-water treatment were highly significant at all five harvests and for both species. The severity of the effects on various plant parts was conditioned by the stage of development of those parts.


2002 ◽  
Vol 53 (6) ◽  
pp. 643 ◽  
Author(s):  
M. J. Robertson ◽  
J. F. Holland ◽  
S. Cawley ◽  
T. D. Potter ◽  
W. Burton ◽  
...  

Canola tolerant to the triazine group of herbicides is grown widely in Australian broad-acre cropping systems. Triazine-tolerant (TT) cultivars are known to have a yield and oil content penalty compared with non-TT cultivars. This study was designed to elucidate the crop physiological basis for the yield differences between the two types. Two commercial cultivars, near-isogenic for the TT trait, were compared in a detailed growth analysis in the field, and 22 crops were compared for phenology and crop attributes at maturity. In the growth analysis study, the TT trait was found to lower radiation use efficiency, which carried through to less biomass at maturity. There were minimal effects on leaf area development and harvest index, and no effect on canopy radiation extinction. Across the 22 crops, where yield varied from 240 to 3400 kg/ha in the non-TT cultivar, yield was on average 26% less in the TT cultivar due to less biomass produced, as there was no significant effect on harvest index. The difference in oil content (2-5%) was greater in low oil content environments. Flowering was delayed by 2-10 days with a greater delay being in later flowering environments. Quantification of the physiological attributes of TT canola allows the assessment of the productivity of different cultivar types across environments.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Bruno Degaspari Minardi ◽  
Ana Paula Lorenzen Voytena ◽  
Marisa Santos ◽  
Áurea Maria Randi

Elaphoglossum luridum(Fée) Christ. (Dryopteridaceae) is an epiphytic fern of the Atlantic Forest (Brazil). Anatomical and physiological studies were conducted to understand how this plant responds to water stress. TheE. luridumfrond is coriaceus and succulent, presenting trichomes, relatively thick cuticle, and sinuous cell walls in both abaxial and adaxial epidermis. Three treatments were analyzed: control, water deficit, and abscisic acid (ABA). Physiological studies were conducted through analysis of relative water content (RWC), photosynthetic pigments, chlorophyll a fluorescence, and malate content. No changes in RWC were observed among treatments; however, significant decreases in chlorophyll a content and photosynthetic parameters, including optimal irradiance (Iopt) and maximum electron transport rate (ETRmax), were determined by rapid light curves (RLC). No evidence of crassulacean acid metabolism (CAM) pathway was observed inE. luridumin response to either water deficit or exogenous application of ABA. On the other hand, malate content decreased in theE. luridumfrond after ABA treatment, seeming to downregulate malate metabolism at night, possibly through tricarboxylic acid (TCA) cycle regulation.


Sign in / Sign up

Export Citation Format

Share Document