scholarly journals Target Traits for Breeding Rice Varieties Having High Yield and Superior Grain Quality in the Tohoku Region of Japan

2017 ◽  
Vol 86 (3) ◽  
pp. 236-242
Author(s):  
Akira Fukushima ◽  
Narifumi Yokogami ◽  
Naoto Tsuda
2021 ◽  
Author(s):  
Weifeng Yang ◽  
Liang Xiong ◽  
Jiayan Liang ◽  
Qingwen Hao ◽  
Xin Luan ◽  
...  

Abstract Background: Rice varieties are required to have high yield and good grain quality. Grain chalkiness and grain shape are two important traits of rice grain quality. Low chalkiness slender grains are preferred by most rice consumers. Here, we dissected two closely linked quantitative trait loci (QTLs) controlling grain chalkiness and grain shape on rice chromosome 8 by substitution mapping. Results: Two closely linked QTLs controlling grain chalkiness and grain shape were identified using single-segment substitution lines (SSSLs). The two QTLs were then dissected on rice chromosome 8 by secondary substitution mapping. qPGC8.1 was located in an interval of 1382.6 kb and qPGC8.2 was mapped in a 2057.1 kb region. The maximum distance of the two QTLs was 4.37 Mb and the space distance of two QTL intervals was 0.72 Mb. qPGC8.1 controlled grain chalkiness and grain width. qPGC8.2 was responsible for grain chalkiness and for grain length and grain width. The additive effects of qPGC8.1 and qPGC8.2 on grain chalkiness were not affected by heat stress. Conclusions: Two closely linked QTLs qPGC8.1 and qPGC8.2 were dissected on rice chromosome 8. They controlled the phenotypes of grain chalkiness and grain shape. The two QTLs were insensitive to high temperature.


2019 ◽  
Vol 39 (04) ◽  
Author(s):  
Kasturi Majumder ◽  
Disharee Nath ◽  
Rambilash Mallick ◽  
Tapash Dasgupta

Thirty-six rice genotypes were evaluated for thirteen different quality parameters along with yield/plant to assess genetic estimates of the traits and the extent of genetic diversity among the varieties. Analysis of variance was conducted to determine GCV, PCV, heritability and GA of the genotypes with respect to all characters. Significant variation was observed in many traits among the genotypes offering scope for selection. Correlation analysis determined the nature of relationship among these characters. UPGMA studies revealed six major clusters and cluster I and II were the largest with maximum number of genotypes. The study identified that the varieties namely, Black Gora, Kalinga-2, Dudheswar, ARC 10086, IR-36, IR-64 and Nipponbare possessed good quality traits and high yield performance. The current study indicated that developing rice varieties for consumer acceptance with good grain quality traits along with high yield will be very useful in rice breeding and in selection of parents for hybridization to combine both high yield and improved quality traits.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245603
Author(s):  
Andrew-Peter-Leon M. T. ◽  
S. Ramchander ◽  
Kumar K. K. ◽  
Mehanathan Muthamilarasan ◽  
M. Arumugam Pillai

Introduction of semi-dwarfism and early maturity in rice cultivars is important to achieve improved plant architecture, lodging resistance and high yield. Gamma rays induced mutations are routinely used to achieve these traits. We report the development of a semi-dwarf, early maturing and high-yielding mutant of rice cultivar ‘Improved White Ponni’, a popular cosmopolitan variety in south India preferred for its superior grain quality traits. Through gamma rays induced mutagenesis, several mutants were developed and subjected to selection up to six generations (M6) until the superior mutants were stabilized. In the M6 generation, significant reduction in days to flowering (up to 11.81% reduction) and plant height (up to 40% reduction) combined with an increase in single plant yield (up to 45.73% increase) was observed in the mutant population. The cooking quality traits viz., linear elongation ratio, breadthwise expansion ratio, gel consistency and gelatinization temperature of the mutants were similar to the parent variety Improved White Ponni. The genetic characterization with SSR markers showed variability between the semi-dwarf-early mutants and the Improved White Ponni. Gibberellin responsiveness study and quantitative real-time PCR showed a faulty gibberellin pathway and epistatic control between the genes such as OsKOL4 and OsBRD2 causing semi-dwarfism in a mutant. These mutants have potential as new rice varieties and can be used as new sources of semi-dwarfism and earliness for improving high grain quality rice varieties.


Fagopyrum ◽  
2018 ◽  
Vol 35 (1) ◽  
pp. 29-35
Author(s):  
Oleh Tryhub ◽  
Vitaliy Burdyga ◽  
Yuriy Kharchenko ◽  
Ruslan Havrylyanchyk

The national collection of buckwheat in Ukraine consists of more than 2,000 samples.The material is studied, reproduced and preserved in special storage facilities with controlled environmental conditions and temperature, humidity of grain in the hermeticcontainers. The research work, conducted over the genepool, has allowed separating the source of valuable for selection treats: high yield and productivity, large grain, low-growing plant, high seedling vigor, resistance towards abscission and impact of abiotic and biotic environmental factors. As a result of the fulfilling research program "Plant genetic resources" following actions are conducted annually:allocation of 10-15 sources of selection and agronomic traits of plant productivity, grain quality, adaptability of the material, etc .;software research and breeding facilities standards, sources and donors of valuable traits for breeding and other research - about 100 collection samples; transmission of 1-2 educational collections (30-50 samples) to educational institutions. 


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Weifeng Yang ◽  
Liang Xiong ◽  
Jiayan Liang ◽  
Qingwen Hao ◽  
Xin Luan ◽  
...  

AbstractRice varieties are required to have high yield and good grain quality. Grain chalkiness and grain shape are two important traits of rice grain quality. Low chalkiness slender grains are preferred by most rice consumers. Here, we dissected two closely linked quantitative trait loci (QTLs) controlling grain chalkiness and grain shape on rice chromosome 8 by substitution mapping. Two closely linked QTLs controlling grain chalkiness and grain shape were identified using single-segment substitution lines (SSSLs). The two QTLs were then dissected on rice chromosome 8 by secondary substitution mapping. qPGC8.1 was located in an interval of 1382.6 kb and qPGC8.2 was mapped in a 2057.1 kb region. The maximum distance of the two QTLs was 4.37 Mb and the space distance of two QTL intervals was 0.72 Mb. qPGC8.1 controlled grain chalkiness and grain width. qPGC8.2 was responsible for grain chalkiness, grain length and width. The additive effects of qPGC8.1 and qPGC8.2 on grain chalkiness were not affected by higher temperature. Two closely linked QTLs qPGC8.1 and qPGC8.2 were dissected on rice chromosome 8. They controlled the phenotypes of grain chalkiness and grain shape. The two QTLs were insensitive to higher temperature.


2020 ◽  
Vol 65 (2) ◽  
pp. 179-187
Author(s):  
Atit Phapumma ◽  
Tidarat Monkham ◽  
Sompong Chankaew ◽  
Wanwipa Kaewpradit ◽  
Pornthippa Harakotr ◽  
...  

Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 325
Author(s):  
Ramin Rayee ◽  
Tran Dang Xuan ◽  
Tran Dang Khanh ◽  
Hoang-Dung Tran ◽  
Kifayatullah Kakar

The management of amylose and protein contents and cooking quality are the main challenges in rice macronutrients and quality improvement. This experiment was conducted to examine the rice grain quality, alkali digestion, and gel consistency responses to irrigation interval after anthesis. Three rice varieties (K1, K3, and K4) were subjected to different irrigation intervals (1, 2, and 3 d) after anthesis. The findings of this study showed that the protein content was markedly increased from 6.53–6.63% to 9.93–10.16%, whilst the amylose content was decreased significantly from 22.00–22.43% to 16.33–17.56% under stressed treatments at irrigation intervals, whilst the quantity of fatty acids was not affected. The 3-d irrigation interval recorded the highest protein content but the lowest amylose value. In addition, this treatment shows lower gelatinization temperature, but it is negatively associated with hard gel consistency under irrigation interval. This study highlights that the water management following a 3-d irrigation interval from anthesis is a useful and simple treatment to improve rice nutrients and grain cooking quality.


Agriculture ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 691
Author(s):  
Omotuyole Isiaka Ambali ◽  
Francisco Jose Areal ◽  
Nikolaos Georgantzis

This study analyses farmers’ adoption of improved rice technology, taking into account farmers’ risk preferences; the unobserved spatial heterogeneity associated with farmers’ risk preferences; farmers’ household and farm characteristics; farm locations, farmers’ access to information, and their perceptions on the rice improved varieties (i.e., high yield varieties, HYV). The study used data obtained from field experiments and a survey conducted in 2016 in Nigeria. An instrumental-variable probit model was estimated to account for potential endogenous farmers’ risk preference in the adoption decision model. Results show that risk averse (risk avoidant) farmers are less likely to adopt HYV, with the spatial lags of farmers’ risk attitudes found to be a good instrument for spatially unobserved variables (e.g., environmental and climatic factors). We conclude that studies supporting policy action aiming at the diffusion of improved rice varieties need to collect information, if possible, on farmers’ risk attitudes, local environmental and climatic conditions (e.g., climatic, topographic, soil quality, pest incidence) in order to ease the design and evaluation of policy actions on the adoption of improved agricultural technology.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1359
Author(s):  
Javaria Tabassum ◽  
Shakeel Ahmad ◽  
Babar Hussain ◽  
Amos Musyoki Mawia ◽  
Aqib Zeb ◽  
...  

Food crop production and quality are two major attributes that ensure food security. Rice is one of the major sources of food that feeds half of the world’s population. Therefore, to feed about 10 billion people by 2050, there is a need to develop high-yielding grain quality of rice varieties, with greater pace. Although conventional and mutation breeding techniques have played a significant role in the development of desired varieties in the past, due to certain limitations, these techniques cannot fulfill the high demands for food in the present era. However, rice production and grain quality can be improved by employing new breeding techniques, such as genome editing tools (GETs), with high efficiency. These tools, including clustered, regularly interspaced short palindromic repeats (CRISPR) systems, have revolutionized rice breeding. The protocol of CRISPR/Cas9 systems technology, and its variants, are the most reliable and efficient, and have been established in rice crops. New GETs, such as CRISPR/Cas12, and base editors, have also been applied to rice to improve it. Recombinases and prime editing tools have the potential to make edits more precisely and efficiently. Briefly, in this review, we discuss advancements made in CRISPR systems, base and prime editors, and their applications, to improve rice grain yield, abiotic stress tolerance, grain quality, disease and herbicide resistance, in addition to the regulatory aspects and risks associated with genetically modified rice plants. We also focus on the limitations and future prospects of GETs to improve rice grain quality.


Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 558
Author(s):  
Xing Huang ◽  
Su Jang ◽  
Backki Kim ◽  
Zhongze Piao ◽  
Edilberto Redona ◽  
...  

Rice yield is a complex trait that is strongly affected by environment and genotype × environment interaction (GEI) effects. Consideration of GEI in diverse environments facilitates the accurate identification of optimal genotypes with high yield performance, which are adaptable to specific or diverse environments. In this study, multiple environment trials were conducted to evaluate grain yield (GY) and four yield-component traits: panicle length, panicle number, spikelet number per panicle, and thousand-grain weight. Eighty-nine rice varieties were cultivated in temperate, subtropical, and tropical regions for two years. The effects of both GEI (12.4–19.6%) and environment (23.6–69.6%) significantly contributed to the variation of all yield-component traits. In addition, 37.1% of GY variation was explained by GEI, indicating that GY performance was strongly affected by the different environmental conditions. GY performance and genotype stability were evaluated using simultaneous selection indexing, and 19 desirable genotypes were identified with high productivity and broad adaptability across temperate, subtropical, and tropical conditions. These optimal genotypes could be recommended for cultivation and as elite parents for rice breeding programs to improve yield potential and general adaptability to climates.


Sign in / Sign up

Export Citation Format

Share Document