scholarly journals Substitution Mapping of Two Closely Linked QTLs on Chromosome 8 Controlling Grain Chalkiness in Rice

Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Weifeng Yang ◽  
Liang Xiong ◽  
Jiayan Liang ◽  
Qingwen Hao ◽  
Xin Luan ◽  
...  

AbstractRice varieties are required to have high yield and good grain quality. Grain chalkiness and grain shape are two important traits of rice grain quality. Low chalkiness slender grains are preferred by most rice consumers. Here, we dissected two closely linked quantitative trait loci (QTLs) controlling grain chalkiness and grain shape on rice chromosome 8 by substitution mapping. Two closely linked QTLs controlling grain chalkiness and grain shape were identified using single-segment substitution lines (SSSLs). The two QTLs were then dissected on rice chromosome 8 by secondary substitution mapping. qPGC8.1 was located in an interval of 1382.6 kb and qPGC8.2 was mapped in a 2057.1 kb region. The maximum distance of the two QTLs was 4.37 Mb and the space distance of two QTL intervals was 0.72 Mb. qPGC8.1 controlled grain chalkiness and grain width. qPGC8.2 was responsible for grain chalkiness, grain length and width. The additive effects of qPGC8.1 and qPGC8.2 on grain chalkiness were not affected by higher temperature. Two closely linked QTLs qPGC8.1 and qPGC8.2 were dissected on rice chromosome 8. They controlled the phenotypes of grain chalkiness and grain shape. The two QTLs were insensitive to higher temperature.

2021 ◽  
Author(s):  
Weifeng Yang ◽  
Liang Xiong ◽  
Jiayan Liang ◽  
Qingwen Hao ◽  
Xin Luan ◽  
...  

Abstract Background: Rice varieties are required to have high yield and good grain quality. Grain chalkiness and grain shape are two important traits of rice grain quality. Low chalkiness slender grains are preferred by most rice consumers. Here, we dissected two closely linked quantitative trait loci (QTLs) controlling grain chalkiness and grain shape on rice chromosome 8 by substitution mapping. Results: Two closely linked QTLs controlling grain chalkiness and grain shape were identified using single-segment substitution lines (SSSLs). The two QTLs were then dissected on rice chromosome 8 by secondary substitution mapping. qPGC8.1 was located in an interval of 1382.6 kb and qPGC8.2 was mapped in a 2057.1 kb region. The maximum distance of the two QTLs was 4.37 Mb and the space distance of two QTL intervals was 0.72 Mb. qPGC8.1 controlled grain chalkiness and grain width. qPGC8.2 was responsible for grain chalkiness and for grain length and grain width. The additive effects of qPGC8.1 and qPGC8.2 on grain chalkiness were not affected by heat stress. Conclusions: Two closely linked QTLs qPGC8.1 and qPGC8.2 were dissected on rice chromosome 8. They controlled the phenotypes of grain chalkiness and grain shape. The two QTLs were insensitive to high temperature.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 325
Author(s):  
Ramin Rayee ◽  
Tran Dang Xuan ◽  
Tran Dang Khanh ◽  
Hoang-Dung Tran ◽  
Kifayatullah Kakar

The management of amylose and protein contents and cooking quality are the main challenges in rice macronutrients and quality improvement. This experiment was conducted to examine the rice grain quality, alkali digestion, and gel consistency responses to irrigation interval after anthesis. Three rice varieties (K1, K3, and K4) were subjected to different irrigation intervals (1, 2, and 3 d) after anthesis. The findings of this study showed that the protein content was markedly increased from 6.53–6.63% to 9.93–10.16%, whilst the amylose content was decreased significantly from 22.00–22.43% to 16.33–17.56% under stressed treatments at irrigation intervals, whilst the quantity of fatty acids was not affected. The 3-d irrigation interval recorded the highest protein content but the lowest amylose value. In addition, this treatment shows lower gelatinization temperature, but it is negatively associated with hard gel consistency under irrigation interval. This study highlights that the water management following a 3-d irrigation interval from anthesis is a useful and simple treatment to improve rice nutrients and grain cooking quality.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1359
Author(s):  
Javaria Tabassum ◽  
Shakeel Ahmad ◽  
Babar Hussain ◽  
Amos Musyoki Mawia ◽  
Aqib Zeb ◽  
...  

Food crop production and quality are two major attributes that ensure food security. Rice is one of the major sources of food that feeds half of the world’s population. Therefore, to feed about 10 billion people by 2050, there is a need to develop high-yielding grain quality of rice varieties, with greater pace. Although conventional and mutation breeding techniques have played a significant role in the development of desired varieties in the past, due to certain limitations, these techniques cannot fulfill the high demands for food in the present era. However, rice production and grain quality can be improved by employing new breeding techniques, such as genome editing tools (GETs), with high efficiency. These tools, including clustered, regularly interspaced short palindromic repeats (CRISPR) systems, have revolutionized rice breeding. The protocol of CRISPR/Cas9 systems technology, and its variants, are the most reliable and efficient, and have been established in rice crops. New GETs, such as CRISPR/Cas12, and base editors, have also been applied to rice to improve it. Recombinases and prime editing tools have the potential to make edits more precisely and efficiently. Briefly, in this review, we discuss advancements made in CRISPR systems, base and prime editors, and their applications, to improve rice grain yield, abiotic stress tolerance, grain quality, disease and herbicide resistance, in addition to the regulatory aspects and risks associated with genetically modified rice plants. We also focus on the limitations and future prospects of GETs to improve rice grain quality.


Agriculture ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 167 ◽  
Author(s):  
Kifayatullah Kakar ◽  
Tran Dang Xuan ◽  
Saidajan Abdiani ◽  
Imran Khan Wafa ◽  
Zubair Noori ◽  
...  

Rice is an important staple food for Afghans. Its production has been increased, and attention is needed to improve grain quality. Experiments were conducted to evaluate the growth, yield, physicochemical properties, antioxidant activity, and morphological structures of four exotic rice varieties widely grown in Afghanistan (Attai-1, Jalalabad-14, Shishambagh-14, and Zodrass). Antioxidant activities, including 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), of rice grain were determined. A scanning electron microscopic observation was conducted on the cross-cut section of dehulled rice grains. The results showed a wide variation among four rice varieties for growth, grain yield, physicochemical properties, antioxidant activities, and morphology. Tiller and panicle number per hill, 1000-grain weight, grain yield, and antioxidant activities were found to be highest in Jalalabad-14. Attai-1 showed lower amylose, protein, and lipid contents with a high number of perfect grains, consequently enhanced taste point (score of quality). Grain yield, protein, and amylose contents showed a negative correlation with antioxidant activities. Accumulated structures in Attai-1, Shishambagh-14, and Zodrass were normal; however, Jalalabad-14 increased protein bodies and its traces in the amyloplasts. Information on yield potential, grain quality, and nutritional value of these exotic rice varieties may useful for sustainable food provision and nutritional improvement of rice in Afghanistan.


2019 ◽  
Vol 39 (04) ◽  
Author(s):  
Kasturi Majumder ◽  
Disharee Nath ◽  
Rambilash Mallick ◽  
Tapash Dasgupta

Thirty-six rice genotypes were evaluated for thirteen different quality parameters along with yield/plant to assess genetic estimates of the traits and the extent of genetic diversity among the varieties. Analysis of variance was conducted to determine GCV, PCV, heritability and GA of the genotypes with respect to all characters. Significant variation was observed in many traits among the genotypes offering scope for selection. Correlation analysis determined the nature of relationship among these characters. UPGMA studies revealed six major clusters and cluster I and II were the largest with maximum number of genotypes. The study identified that the varieties namely, Black Gora, Kalinga-2, Dudheswar, ARC 10086, IR-36, IR-64 and Nipponbare possessed good quality traits and high yield performance. The current study indicated that developing rice varieties for consumer acceptance with good grain quality traits along with high yield will be very useful in rice breeding and in selection of parents for hybridization to combine both high yield and improved quality traits.


Author(s):  
Engku Hasmah Engku Abdullah ◽  
Azizah Misran ◽  
Muhammad Nazmin Yaapar ◽  
Mohd Rafii Yusop ◽  
Asfaliza Ramli

Silicon (Si) is a micronutrient that can increase the resistance of certain plants against multiple biotic or abiotic stresses. It is known that Si has a beneficial effect on plant growth, beginning in the soil, which could lead to a good crop yield. Despite its benefits, Si is not listed among the generally essential elements or nutrients for rice production in many countries such as Malaysia. This review discusses the ability to uptake Si and its benefits on rice. Environmental factors affect rice production, and among the factors, high temperature has been shown to disrupt the physiological development of rice grain, which contributes to chalkiness. Chalkiness is an undesirable trait that decreases grain’s value, milling, cooking, and eating quality. The application of Si could ameliorate rice grain quality, thus providing a valuable reference for Si fertiliser use in high-quality rice production. This review also presents an update on the potentials of Si in improving the rice yield and grain quality, including Si’s ability to minimise grain chalkiness. Therefore, it is anticipated that Si applications will increase rice yield and grain quality and help to reduce chalkiness.


2017 ◽  
Vol 63 ◽  
pp. 18-26
Author(s):  
Nguyen Thi Lang ◽  
Phan Ho Truc Giang ◽  
Pham Thi Thu Ha ◽  
Tran Bao Toan ◽  
Truong Anh Phuong ◽  
...  

Chalkiness is a major constraint on rice production because it is one of the key factors determining grain quality (appearance, processing, milling, storing, eating, and cooking quality) and price. In this study, we conducted grain chalkiness gene identification using co-dominant insertion/deletion (INDEL) markers and SSR marker combination on 50 different varieties. The application results in 7 InDel markers and SSR marker on chromosome 7 were recorded. Three primers, InDel 5, InDel 14 and RM21938, associated with grain chalkiness. For the InDel 5 primer, the amplification product was 100%. Use of primer InDel 5 in detection and evaluation of genotype to the chalkiness trait of rice grain on 50 rice varieties indicated the suitability level with phenotypic evaluation was 86% and the unsuitability level was 14%. For the InDel 14 primer, the amplification products were 100%. The suitability with phenotypic assessment was 84% and the unsuitability was 16%. For the RM21938 primer, the amplification product was 94%. The suitability with phenotypic assessment was 76% and the unsuitability was 24%. Thirteen of the selected varieties had grain chalkiness gene both InDel 5, InDel 14 and RM21938. Total 13 varieties were detected from InDel 5, InDel 14 and RM12938 primer combinations also showed high efficiency of the InDel technique in identifying chalkiness gene in rice grain. A cluster analysis was performed and a dendrogram was constructed which evinced the nature of phylogenetic classification among the genotypes of the varieties. These markers could be used for developing quality of rice in breeding program.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yanan Niu ◽  
Tianxiao Chen ◽  
Chunchao Wang ◽  
Kai Chen ◽  
Congcong Shen ◽  
...  

Abstract Background Grain weight and grain shape are important agronomic traits that affect the grain yield potential and grain quality of rice. Both grain weight and grain shape are controlled by multiple genes. The 3,000 Rice Genomes Project (3 K RGP) greatly facilitates the discovery of agriculturally important genetic variants and germplasm resources for grain weight and grain shape. Results Abundant natural variations and distinct phenotic differentiation among the subgroups in grain weight and grain shape were observed in a large population of 2,453 accessions from the 3 K RGP. A total of 21 stable quantitative trait nucleotides (QTNs) for the four traits were consistently identified in at least two of 3-year trials by genome-wide association study (GWAS), including six new QTNs (qTGW3.1, qTGW9, qTGW11, qGL4/qRLW4, qGL10, and qRLW1) for grain weight and grain shape. We further predicted seven candidate genes (Os03g0186600, Os09g0544400, Os11g0163600, Os04g0580700, Os10g0399700, Os10g0400100 and Os01g0171000) for the six new QTNs by high-density association and gene-based haplotype analyses. The favorable haplotypes of the seven candidate genes and five previously cloned genes in elite accessions with high TGW and RLW are also provided. Conclusions Our results deepen the understanding of the genetic basis of grain weight and grain shape in rice and provide valuable information for improving rice grain yield and grain quality through molecular breeding.


2021 ◽  
Vol 58 (Special) ◽  
pp. 208-220
Author(s):  
Torit Baran Bagchi ◽  
Sarangadhar Nayak ◽  
Monalisha Biswal ◽  
Soumya Kumar Sahoo ◽  
Awadhesh Kumar

Rice grain quality is the most important factor for evaluation of a variety as well as millers, consumers and farmer's point of view. It includes physico-chemical, nutritional and sensory qualities. The consumers of India and other south east Asian countries prefer medium to high amylose content (AC) rice due to their non-stickiness properties of boiled rice but in many Asian countries, waxy rice (having low AC) mainly preferred. The colour of rice grain may be white, purple, red and black; which are mainly associated with pericarp or bran layers of the whole grain. The bran contains most of the phytochemicals like oils, antioxidants, minerals, proteins, vitamins and crude fibers in higher concentration than white endosperm. Pigmented rice is generally rich in nutritional compounds as compared to white one but those are unpopular among the farmers because of many undesirable physiological and agronomic characteristics. Sensory qualities like colour, texture, pasting properties, aroma are essential for consumers as per their preference and acceptance. As rice grain is mainly composed by starch, hydrolyzed by digestive enzymes and converted into glucose which is the major energy source for various metabolic functions. After fulfilling the body energy requirement, extra calories from starch are stored as fats or glycogen for later use. Therefore, overeating food containing rice with sedentary lifestyle potentially leads to some health issues, such as type-II diabetes, obesity and colon diseases in long term particularly in Asian countries. Various biochemical factors affect the starch digestibility and Glycemic index (GI) of a food or its products. These factors are resistant starch, AC and phytic acid which lowers the starch digestibility by various ways and have been negatively correlated with GI value. Now-a-days quality assessment of rice grain in terms of its nutritional as well as physico-chemical parameters is gaining prime importance gradually.


2021 ◽  
Vol 306 ◽  
pp. 01033
Author(s):  
Yanto Surdianto ◽  
Bambang Sunandar ◽  
Kurnia ◽  
Nana Sutrisna

In developing new superior rice varieties, farmers’ preferences are important things to study and high yield potential. The study aimed to obtain new superior varieties of adaptive rice based on plant growth and productivity performance and determine respondents’ preferences for the varieties studied. The study was conducted in rainfed rice fields, Majalengka Regency, West Java Province, from April to August 2020. The study used a randomized block with 6 treatments: Inpari 32 varieties, Inpari 39, Inpari 42, Inpari 43, Pajajaran, and Siliwangi, and repeated 5 times. The observed parameters consisted of: growth, yield components, and yields were analyzed by ANOVA followed by Duncan’s Multiple Range Test at a 5% level. The respondent’s preference test for grain and rice and organoleptic characters used a Likert scale and analyzed non-parametrically (Friedman test). The results showed that the Inpari 43 variety gave the highest yield. Still, farmers preferred the Inpari 32 variety to be developed because it has characters favored by farmers (respondents), namely short plant height, a large number of tillers, thin grain shape, white rice color, and fluffier rice taste.


Sign in / Sign up

Export Citation Format

Share Document