Wallace Stevens's Point of View

PMLA ◽  
2015 ◽  
Vol 130 (1) ◽  
pp. 54-68
Author(s):  
Joshua Kotin

“The earth, for us, is flat and bare. / … Poetry // Exceeding music must take the place / Of empty heaven and its hymns… Such claims saturate Wallace Stevens's work: poetry, Stevens affirms and reaffirms, is a potential source of value in a secular world. This essay tracks his attempts to realize this potential—to write a poem that would satisfy his metaphysical need. His work is relentlessly self-critical and experimental, and over his career he develops extravagant (and ultimately hermetic) responses to a stubborn philosophical problem. My aim is to reframe critical approaches to a central topic in Stevens's poetry and to re-evaluate his relation to philosophy. In the process, I hope to suggest answers to more general questions: What is experimental poetry? How do poets think in verse? Why do poets write difficult poems? What makes a poem difficult in the first place?

2018 ◽  
Author(s):  
Angelo De Santis ◽  
Gianfranco Cianchini ◽  
Rita Di Giovambattista ◽  
Cristoforo Abbattista ◽  
Lucilla Alfonsi ◽  
...  

Abstract. Geosystemics (De Santis 2009, 2014) studies the Earth system as a whole focusing on the possible coupling among the Earth layers (the so called geo-layers), and using universal tools to integrate different methods that can be applied to multi-parameter data, often taken on different platforms. Its main objective is to understand the particular phenomenon of interest from a holistic point of view. In this paper we will deal with earthquakes, considered as a long term chain of processes involving, not only the interaction between different components of the Earth’s interior, but also the coupling of the solid earth with the above neutral and ionized atmosphere, and finally culminating with the main rupture along the fault of concern (De Santis et al., 2015a). Some case studies (particular emphasis is given to recent central Italy earthquakes) will be discussed in the frame of the geosystemic approach for better understanding the physics of the underlying complex dynamical system.


2011 ◽  
Vol 123 (1) ◽  
pp. 2
Author(s):  
R.W. Home

In setting up the Flagstaff Observatory in Melbourne in 1857, the young German geophysicist Georg Neumayer brought new standards of precision to the pursuit of physics in Australia. His wide-ranging research program in geomagnetism, meteorology and oceanography was conceived within an overall approach to science associated especially with the name of Alexander von Humboldt, that saw the Earth and its oceans and atmosphere as an integrated dynamical system. Neumayer also, however, envisaged immediate practical outcomes from his work, whether in determining optimal sailing routes between Europe and Australia, or in locating new mineral deposits. From a personal point of view he regarded his seven years in Australia as, above all, a preparation for the scientific investigation of Antarctica that he dreamed in vain of undertaking.


1996 ◽  
Vol 7 (4) ◽  
pp. 333-348 ◽  
Author(s):  
Patrick J. Michaels ◽  
Paul C. Knappenberger

Climate data support the “moderate” prediction of climate change (l-1.5°C) rather than the more extreme scenario (4°C or more). The moderate point of view was originally marginalized in the IPCC “consensus” process in both the 1990 First Assessment on Climate Change and in the 1992 Update prepared specifically for the Earth Summit and to provide backing for the Rio Framework Convention on Climate Change. It is now accepted, based on ground-based data, that the errors in those models are currently between 160% and 360%. If one compares them to the satellite data combined with the land record, the error rises to a maximum of 720%. In some recognition of this massive error, the 1995 IPCC “consensus” is that warming has been mitigated by sulfate aerosols. However, when that hypothesis is specifically tested, it fails. Further, data required to test the validity of the sulfate enhanced greenhouse models was withheld by the IPCC. despite repeated requests.


2019 ◽  
Vol 11 (6) ◽  
pp. 56
Author(s):  
Leonardo Golubovic ◽  
Steven Knudsen

The discovery of ultra-strong materials such as carbon nanotubes and diamond nano-thread structures has recently motivated an enhanced interest for the physics of Space Elevators connecting the Earth with outer space. A new concept has recently emerged in space elevator physics: Rotating Space Elevators (RSE) [Golubović, L. & Knudsen, S. (2009). Classical and statistical mechanics of celestial scale spinning strings: Rotating space elevators. Europhysics Letters 86(3), 34001.]. Objects sliding along rotating RSE string (sliding climbers) do not require internal engines or propulsion to be transported from the Earth's surface into outer space. Here we address the physics of a special RSE family, Uniform Stress Rotating Space Elevators (USRSE), characterized by constant tensile stress along the string. From the point of view of materials science, this condition provides the best control of string’s global integrity. We introduce an advanced analytic approach to obtain the dynamic equilibrium configurations of USRSE strings. We use our results to discuss the applications of USRSE for spacecraft launching.


2019 ◽  
Vol 15 (S367) ◽  
pp. 444-445
Author(s):  
Fernando Ariel Karaseur ◽  
Alejandro Gangui

AbstractWe present the results of the implementation of a didactic sequence based on the formulation and resolution of astronomical problems by seventh grade elementary school students from the Autonomous City of Buenos Aires, Argentina. Its objective is to generate a meaningful understanding of the heliocentric model of the Solar System from the systematization of topocentric observations of the sky, either direct or mediated by resources such as diagrams, Stellarium software and tables, which we correlate with the parallel globe, other models with specific material and the Solar System Scope software. Throughout the sequence we address topics such as the diurnal and annual movement of the Sun, the night sky, astronomical ephemeris, Moon phases and eclipses. These are developed in parallel to the sphericity of the Earth and the concept of motion in science. For each of these topics we start from its recognition. We then implement strategies to guide students towards a possible description from the local point of view, and then extend it to other locations on the surface of the Earth. We encourage them to explain their ideas about the possible links between these topocentric observations and the corresponding relative positions of the celestial objects as seen from an external point of view to the Earth. These ideas are then contrasted with geocentric and heliocentric models. Here we highlight the integrative instances in which the students formulated problems in small groups and shared them for their resolution. Thus, motivated and challenged by the collaboration between peers, they became the protagonists of their learning.


2018 ◽  
Vol 10 (2) ◽  
pp. 60
Author(s):  
Recep Dogan

Human beings express their emotions through the language of art; it is therefore both the spirit of progress and one of the most important means of developing emotions. Consequently, those who cannot make use of this means are incomplete in their maturation. Ideas and other products of the imagination can be given tangible form with the magical key of art. By means of art, humanity can exceed the limits of the earth and reach feelings beyond time and space. Beauty in the realm of existence can be recognized through art. Moreover, the great abilities inherent in human nature can be understood and witnessed in works of art. However, from an Islamic point of view, there are some restrictions on certain fields such as sculpture and painting. It is therefore imperative to analyse the notion of art in Islam and its philosophy and then reflect upon the need of the spirit to connect to God through the language of art while meeting some religious obstacles on the way.


2010 ◽  
Vol 10 (7) ◽  
pp. 1629-1633 ◽  
Author(s):  
M. K. Kachakhidze ◽  
R. Kiladze ◽  
N. Kachakhidze ◽  
V. Kukhianidze ◽  
G. Ramishvili

Abstract. It is acceptable that earthquakes certain exogenous (cosmic) triggering factors may exist in every seismoactive (s/a) region and in Caucasus among them. They have to correct earthquake occurring moment or play the triggering role in case when the region is at the limit of the critical value of the geological medium of course. Our aim is to reveal some exogenous factors possible to initiate earthquakes, on example of Caucasus s/a region, taking into account that the region is very complex by the point of view of the tectonic stress distribution. The compression stress directed from North to South (and vice versa) and the spread stress directed from East to West (and vice versa) are the main stresses acted in Caucasus region. No doubt that action of the smallest external stress may "work" as earthquakes triggering factor. In the presented work the Moon and the Sun perturbations are revealed as initiative agents of earthquakes when the directions of corresponding exogenous forces coincide with the directions of the compression stress or the spreading tectonic stress in the region.


1859 ◽  
Vol 6 (31) ◽  
pp. 39-49
Author(s):  
J. Stevenson Bushnan

Physiology is co-extensive with organic nature. Organic nature is wholly composed of individuals, comprising the two great kingdoms of plants and animals. A unity of structure pervades the whole of this wide field of nature; and this unity is a great principle, applicable to the determination of truth in the investigation of this part of knowledge. Every individual in organic nature is a system made up of reciprocally dependent and connected parts. The objects of investigation in physiology are phenomena, organs, and principles. The study of phenomena stands first in order; but while it must essentially be first cultivated and advanced, in the ulterior stages of its progress it gains continually fresh additions from the progress made in the knowledge of organs and principles. That phenomena attract attention before organs, is manifest on the slightest consideration. Thus the phenomena of locomotion were familiar to mankind long before the part taken by the muscular flesh in locomotion was discovered. To this moment it is far more certain that absorption takes place throughout the animal body, than what the organs are by which that office is performed. And it would be easy to multiply examples of the same kind, not-withstanding that there are some phenomena of the human body—such as those connected with the sense of sight, the sense of hearing, and other senses—the organs concerned in which must have been known, in a general manner, almost as soon as the earliest phenomena in which they are concerned. Principles, in their larger sense, take their place subsequently to the study of organs; yet, as referring to the more common genera of phenomena, these must also have had their rise almost coeval with the observation of phenomena. Thus the grouping of colours, sounds, smells, and tastes together, under the name of qualities derived from sense, must have been a very early and universal generalization. Nevertheless, it will, I think, be conceded, after these examples, that the study of phenomena is of a more elementary character in physiology, than the study of organs and principles; and, therefore, in the difficult parts of any physiological subject, that more progress is likely to be made by the study of phenomena, than by the study of organs and principles. But before proceeding further, it may be desirable to give some examples of physiological phenomena:—the alternation of sleep and waking; of hunger and satiety; thirst; the effect of drink; breathing; the exercise of the senses, and trains of thought; the various kinds of locomotion, walking, running, leaping, dancing. Here a question naturally arises—if trains of thought be physiological phenomena, does not all human knowledge fall within the definition of physiological phenomena? If the human race were not yet called into being, neither would human knowledge, it is true, have any existence in the world. And, it is doubtless true, under one point of view, that all that man has discovered; all that he has recorded; all the changes which he has made upon the earth since his first creation—are the effects of his physiological nature. But to place all knowledge under the head of physiology would be to defeat the very end of methodical arrangement, to which the progress of knowledge is so largely indebted. Nor is it difficult to mark out at least the general character of the boundaries within which physiology, in the largest sense in which it is convenient to accept it, should be circumscribed. Let us take as an example man's susceptibility of locomotion. It is a sufficient illustration of the physiology of locomotion to point out, that every man without any extraordinary effort learns to walk, run, hop, leap, climb; but there is at least a manifest convenience in separating such more difficult acquisitions as dancing, skating, writing, from the order of physiological phenomena, and placing each in a department by itself, as subject to its own rules. So also it is at least a convenience to consider painting and music as separate departments of study, and not merely as physiological phenomena, falling under the senses of sight and of hearing. It may be supposed to be a matter of the like convenience, to separate from physiology all the phenomena which enter into what are commonly called trains of thought; that is nearly all that comes under the head of psychology, in its most appropriate extent of signification. But several objections will readily occur to such a mutilation of physiology. In particular, it is objectionable, because, as was already hinted, the phenomenal departments of physiology, though the first to take a start, are often much augmented by the subsequent study of the organs concerned; and, more so that, since psychology, disjoined from physiology, and limited to one mode of culture, namely, by reflexion on the subjects of consciousness, were psychology thrown out from physiology, the probable advantages from the study of the organs concerned in the mental processes, and the other modes of culture, admissible in physiological enquiry, would be lost. If it be said that psychology proper rejects all evidence, except the evidence of consciousness, on no other ground, but because of the uncertainty of every other source of evidence—the answer is, that in those sciences which have made most progress, possibility, probability, and moral certainty have always been admitted as sufficient interim grounds for the prosecution of such inquiries as have finally, though at first leading to inexact conclusions, opened the way to the attainment of the most important truths; and that psychology, by the over-rigidness of its rules of investigation, has plainly fallen behind sciences, in advance of which it at one time stood in its progress.


Entropy ◽  
2019 ◽  
Vol 21 (4) ◽  
pp. 412 ◽  
Author(s):  
Angelo De Santis ◽  
Cristoforo Abbattista ◽  
Lucilla Alfonsi ◽  
Leonardo Amoruso ◽  
Saioa A. Campuzano ◽  
...  

Earthquakes are the most energetic phenomena in the lithosphere: their study and comprehension are greatly worth doing because of the obvious importance for society. Geosystemics intends to study the Earth system as a whole, looking at the possible couplings among the different geo-layers, i.e., from the earth’s interior to the above atmosphere. It uses specific universal tools to integrate different methods that can be applied to multi-parameter data, often taken on different platforms (e.g., ground, marine or satellite observations). Its main objective is to understand the particular phenomenon of interest from a holistic point of view. Central is the use of entropy, together with other physical quantities that will be introduced case by case. In this paper, we will deal with earthquakes, as final part of a long-term chain of processes involving, not only the interaction between different components of the Earth’s interior but also the coupling of the solid earth with the above neutral or ionized atmosphere, and finally culminating with the main rupture along the fault of concern. Particular emphasis will be given to some Italian seismic sequences.


2018 ◽  
Vol 32 (07) ◽  
pp. 1850081 ◽  
Author(s):  
Kunquan Lu ◽  
Meiying Hou ◽  
Zehui Jiang ◽  
Qiang Wang ◽  
Gang Sun ◽  
...  

We treat the earth crust and mantle as large scale discrete matters based on the principles of granular physics and existing experimental observations. Main outcomes are: A granular model of the structure and movement of the earth crust and mantle is established. The formation mechanism of the tectonic forces, which causes the earthquake, and a model of propagation for precursory information are proposed. Properties of the seismic precursory information and its relevance with the earthquake occurrence are illustrated, and principle of ways to detect the effective seismic precursor is elaborated. The mechanism of deep-focus earthquake is also explained by the jamming–unjamming transition of the granular flow. Some earthquake phenomena which were previously difficult to understand are explained, and the predictability of the earthquake is discussed. Due to the discrete nature of the earth crust and mantle, the continuum theory no longer applies during the quasi-static seismological process. In this paper, based on the principles of granular physics, we study the causes of earthquakes, earthquake precursors and predictions, and a new understanding, different from the traditional seismological viewpoint, is obtained.


Sign in / Sign up

Export Citation Format

Share Document