THE SYNTHESIS OF DNA AND RNA IN NORMAL HUMAN ENDOMETRIUM IN SHORT-TERM INCUBATION IN VITRO AND ITS RESPONSE TO OESTRADIOL AND PROGESTERONE

1970 ◽  
Vol 48 (1) ◽  
pp. 17-28 ◽  
Author(s):  
S. NORDQVIST

SUMMARY A method is described for short-term incubations in vitro of normal endometrium for the study of nucleic acid synthesis. Tissue suspensions of specimens obtained at curettage were incubated with and without hormones in a medium consisting of Parker's 199 medium and 20% adult human serum; [3H]thymidine and [14C]uridine were added. The isotope uptake into the nucleic acids was determined and related to the total amount of DNA in each sample. Marked variation in DNA synthesis was noted in endometria obtained at different phases of the menstrual cycle. RNA synthesis varied less. After the addition of progesterone, synthesis of both nucleic acids was reduced. The magnitude of this response varied in different endometria. Thus DNA synthesis in endometria already under strong progesterone influence in vivo (midsecretory phase) was least affected when progesterone was added in vitro.

1970 ◽  
Vol 48 (1) ◽  
pp. 29-38 ◽  
Author(s):  
S. NORDQVIST

SUMMARY Twenty-five endometrial carcinomas and three non-endometrial carcinomas were studied for the influence of various steroid hormones on the synthesis of DNA and RNA in short-term incubations in vitro. Endometrial carcinomas showed a dose-dependent sensitivity to progesterone in vitro, the response in both nucleic acids sometimes exceeding that of normal endometria. The mean reduction in DNA synthesis was to 46% and in RNA synthesis to 39% of the control values. Poorly differentiated carcinomas showed higher values of DNA synthesis than highly differentiated ones, as did carcinomas from younger women compared with those from older women. The response in vitro to progesterone was not correlated with these factors. Pregnenolone and a synthetic progestogen were less effective in vitro than progesterone. Oestradiol at a high concentration (20 μg/ml) in some cases significantly reduced the synthesis of both nucleic acids, possibly because of a specific 'toxic' action on the cells. No hormonal effects were observed in non-endometrial carcinomas.


Blood ◽  
1969 ◽  
Vol 33 (2) ◽  
pp. 300-312 ◽  
Author(s):  
SYDNEY E. SALMON ◽  
H. HUGH FUDENBERG

Abstract Twenty-six patients with multiple myeloma and macroglobulinemia of Waldenström were studied clinically and immunologically with characterization of their paraproteins and normal immunoglobulins, as well as by in vitro culture of their peripheral lymphocytes for evaluation of DNA and RNA synthesis after phytohemagglutinin stimulation. The lymphocytes of the patients were found to be significantly deficient in response to PHA as compared to normals and patients with benign hypergammaglobulinemia. Levels of normal immunoglobulins were reduced in almost all of the paraproteinemic patients, but there was not a direct correlation between lymphocyte unresponsiveness and immunoglobulin deficiency. The defect in lymphocyte function appeared to be cellular inasmuch as normal lymphocytes had normal DNA synthesis when cultured in myeloma plasma. The decrease in lymphocyte nucleic acid synthesis appeared to be unrelated to immunoglobulin class, quantitative levels or antigenic characteristics of the patients’ paraproteins. Untreated myeloma patients with a past history of infection had lower levels of lymphocyte DNA synthesis than those patients who lacked such a history, suggesting a relationship between the in vitro lymphocyte response to PHA and the in vivo response to the antigenic challenge of bacterial infection.


1971 ◽  
Vol 121 (5) ◽  
pp. 803-809 ◽  
Author(s):  
M. A. Waqar ◽  
L. A. Burgoyne ◽  
M. R. Atkinson

The properties of a nuclear preparation from rat liver and thymus are described. (1) Nearest-neighbour analysis after incorporation of 32P-labelled nucleotide residues from dATP, dCTP, dGTP, dTTP and arabinofuranosyl analogues of CTP and ATP shows template-dependent DNA synthesis. (2) Where primer termini are limiting, incorporation of arabinofuranosyl analogues of AMP and CMP residues proceeds to a limit indicating that both of these analogues are DNA chain terminators. (3) No large differences have been found between the priming potentialities or the intrinsic DNA polymerase activities of nuclei from resting or regenerating liver and the relationship of this DNA synthesis in vitro to DNA replication or repair in vivo is briefly discussed.


1992 ◽  
Vol 67 (01) ◽  
pp. 060-062 ◽  
Author(s):  
J Harsfalvi ◽  
E Tarcsa ◽  
M Udvardy ◽  
G Zajka ◽  
T Szarvas ◽  
...  

Summaryɛ(γ-glutamyl)lysine isodipeptide has been detected in normal human plasma by a sensitive HPLC technique in a concentration of 1.9-3.6 μmol/1. Incubation of in vitro clotted plasma at 37° C for 12 h resulted in an increased amount of isodipeptide, and there was no further significant change when streptokinase was also present. Increased in vivo isodipeptide concentrations were also observed in hypercoagulable states and during fibrinolytic therapy.


2020 ◽  
Vol 20 (11) ◽  
pp. 821-830
Author(s):  
Prasad Pofali ◽  
Adrita Mondal ◽  
Vaishali Londhe

Background: Current gene therapy vectors such as viral, non-viral, and bacterial vectors, which are used for cancer treatment, but there are certain safety concerns and stability issues of these conventional vectors. Exosomes are the vesicles of size 40-100 nm secreted from multivesicular bodies into the extracellular environment by most of the cell types in-vivo and in-vitro. As a natural nanocarrier, exosomes are immunologically inert, biocompatible, and can cross biological barriers like the blood-brain barrier, intestinal barrier, and placental barrier. Objective: This review focusses on the role of exosome as a carrier to efficiently deliver a gene for cancer treatment and diagnosis. The methods for loading of nucleic acids onto the exosomes, advantages of exosomes as a smart intercellular shuttle for gene delivery and therapeutic applications as a gene delivery vector for siRNA, miRNA and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and also the limitations of exosomes as a gene carrier are all reviewed in this article. Methods: Mostly, electroporation and chemical transfection are used to prepare gene loaded exosomes. Results: Exosome-mediated delivery is highly promising and advantageous in comparison to the current delivery methods for systemic gene therapy. Targeted exosomes, loaded with therapeutic nucleic acids, can efficiently promote the reduction of tumor proliferation without any adverse effects. Conclusion: In the near future, exosomes can become an efficient gene carrier for delivery and a biomarker for the diagnosis and treatment of cancer.


2021 ◽  
Vol 22 (9) ◽  
pp. 4368
Author(s):  
Heriberto Rodriguez-Martinez ◽  
Emilio A. Martinez ◽  
Juan J. Calvete ◽  
Fernando J. Peña Vega ◽  
Jordi Roca

Seminal plasma (SP), the non-cellular component of semen, is a heterogeneous composite fluid built by secretions of the testis, the epididymis and the accessory sexual glands. Its composition, despite species-specific anatomical peculiarities, consistently contains inorganic ions, specific hormones, proteins and peptides, including cytokines and enzymes, cholesterol, DNA and RNA—the latter often protected within epididymis- or prostate-derived extracellular vesicles. It is beyond question that the SP participates in diverse aspects of sperm function pre-fertilization events. The SP also interacts with the various compartments of the tubular genital tract, triggering changes in gene function that prepares for an eventual successful pregnancy; thus, it ultimately modulates fertility. Despite these concepts, it is imperative to remember that SP-free spermatozoa (epididymal or washed ejaculated) are still fertile, so this review shall focus on the differences between the in vivo roles of the SP following semen deposition in the female and those regarding additions of SP on spermatozoa handled for artificial reproduction, including cryopreservation, from artificial insemination to in vitro fertilization. This review attempts, including our own results on model animal species, to critically summarize the current knowledge of the reproductive roles played by SP components, particularly in our own species, which is increasingly affected by infertility. The ultimate goal is to reconcile the delicate balance between the SP molecular concentration and their concerted effects after temporal exposure in vivo. We aim to appraise the functions of the SP components, their relevance as diagnostic biomarkers and their value as eventual additives to refine reproductive strategies, including biotechnologies, in livestock models and humans.


Author(s):  
Daniel L. Villeneuve ◽  
Brett R. Blackwell ◽  
Jenna E. Cavallin ◽  
Wan‐Yun Cheng ◽  
David J. Feifarek ◽  
...  

2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Pei-Yao Liu ◽  
Cheng-Cheung Chen ◽  
Chia-Ying Chin ◽  
Te-Jung Liu ◽  
Wen-Chiuan Tsai ◽  
...  

AbstractIn obese adults, nonalcoholic fatty liver disease (NAFLD) is accompanied by multiple metabolic dysfunctions. Although upregulated hepatic fatty acid synthesis has been identified as a crucial mediator of NAFLD development, the underlying mechanisms are yet to be elucidated. In this study, we reported upregulated expression of gene related to anergy in lymphocytes (GRAIL) in the livers of humans and mice with hepatic steatosis. Grail ablation markedly alleviated the high-fat diet-induced hepatic fat accumulation and expression of genes related to the lipid metabolism, in vitro and in vivo. Conversely, overexpression of GRAIL exacerbated lipid accumulation and enhanced the expression of lipid metabolic genes in mice and liver cells. Our results demonstrated that Grail regulated the lipid accumulation in hepatic steatosis via interaction with sirtuin 1. Thus, Grail poses as a significant molecular regulator in the development of NAFLD.


1979 ◽  
Author(s):  
K. L. Kellar ◽  
B. L. Evatt ◽  
C. R. McGrath ◽  
R. B. Ramsey

Liquid cultures of bone marrow cells enriched for megakaryocytes were assayed for incorporation of 3H-thymidine (3H-TdR) into acid-precipitable cell digests to determine the effect of thrombopoietin on DNA synthesis. As previously described, thrombopoietin was prepared by ammonium sulfate fractionation of pooled plasma obtained from thrombocytopenic rabbits. A control fraction was prepared from normal rabbit plasma. The thrombopoietic activity of these fractions was determined in vivo with normal rabbits as assay animals and the rate of incorporation of 75Se-selenomethionine into newly formed platelets as an index of thrombopoietic activity of the infused material. Guinea pig megakaryocytes were purified using bovine serum albumin gradients. Bone marrow cultures containing 1.5-3.0x104 cells and 31%-71% megakaryocytes were incubated 18 h in modified Dulbecco’s MEM containing 10% of the concentrated plasma fractions from either thrombocytopenic or normal rabbits. In other control cultures, 0.9% NaCl was substituted for the plasma fractions. 3H-TdR incorporation was measured after cells were incubated for 3 h with 1 μCi/ml. The protein fraction containing thrombopoietin-stimulating activity caused a 25%-31% increase in 3H-TdR incorporation over that in cultures which were incubated with the similar fraction from normal plasma and a 29% increase over the activity in control cultures to which 0.9% NaCl had been added. These data suggest that thrombopoietin stimulates DNA synthesis in megakaryocytes and that this tecnique may be useful in assaying thrombopoietin in vitro.


Sign in / Sign up

Export Citation Format

Share Document