Involvement of the adrenal gland in the suckling-induced decrease in LH and FSH secretion and the concomitant increase in prolactin secretion in the rat

1990 ◽  
Vol 125 (2) ◽  
pp. 279-285 ◽  
Author(s):  
K. Taya ◽  
S. Sasamoto

ABSTRACT The role of the adrenal gland in the regulation of gonadotrophin and prolactin secretion in the lactating rat was investigated. Changes in secretion of LH, FSH, prolactin, ACTH, β-lipotrophin (β-LPH), inhibin, corticosterone and progesterone after adrenalectomy were examined during the second half of lactation. Follicular maturation was determined by the ability of the follicles to ovulate in response to 10IU human chorionic gonadotrophin (hCG). Adrenalectomy on day 10 of lactation prevented an increase in plasma concentrations of LH and FSH in response to ovariectomy performed at the same time as adrenalectomy, and markedly stimulated secretion of ACTH, β-LPH and prolactin. Adrenalectomy reduced the number of follicles capable of ovulating in response to hCG. Concentrations of inhibin and progesterone in the plasma significantly decreased after adrenalectomy, indicating that development of ovulatory follicles and luteal function had been suppressed. Abolishing the increase in plasma concentrations of LH and inducing a decrease in FSH in the plasma by adrenalectomy therefore prevented maturation of a new set of follicles usually seen during the second half of lactation in rats. The decrease in plasma concentrations of LH also inhibited the ability of the corpus luteum to secrete progesterone, although high concentrations of plasma prolactin were maintained in adrenalectomized lactating rats. These results indicate that the pituitary-adrenal system is capable of influencing the maintenance of a normal secretion of gonadotrophin and prolactin as well as the maintenance of ovarian function during lactation in the rat. Journal of Endocrinology (1990) 125, 279—285

1989 ◽  
Vol 120 (2) ◽  
pp. 269-273 ◽  
Author(s):  
A. López-Calderón ◽  
C. Ariznavarreta ◽  
M. D. Calderón ◽  
J. A. F. Tresguerres ◽  
M. I. Gonzalez-Quijano

ABSTRACT The response of prolactin to chronic stress in intact, adrenalectomized and adrenomedullectomized male rats was studied. Immobilization stress in intact animals induced a significant increase in plasma concentrations of prolactin after 20 and 45 min and a significant decrease when the rats were submitted to chronic restraint (6 h daily for 4 days). Five weeks after adrenomedullectomy, plasma prolactin and corticosterone responses to chronic stress were not modified. In contrast, the inhibitory effect of chronic stress on prolactin secretion was totally suppressed by adrenalectomy. When treated with dexamethasone during the 4 days of restraint, adrenalectomized stressed rats showed similar plasma concentrations of prolactin to the intact stressed rats. These data indicate that the adrenal cortex is able to play an inhibitory role on prolactin secretion during stress only through a prolonged release of glucocorticoids. Journal of Endocrinology (1989) 120, 269–273


1984 ◽  
Vol 102 (2) ◽  
pp. 189-198 ◽  
Author(s):  
K. P. McNatty ◽  
N. Hudson ◽  
M. Gibb ◽  
K. M. Henderson ◽  
S. Lun ◽  
...  

ABSTRACT The plasma concentrations of LH and prolactin and various parameters of ovarian function were examined in cows on known days of the oestrous cycle during May and June (autumn and winter) and during October (spring). Luteinizing hormone peak frequency and plasma prolactin concentrations were significantly higher in October than during the May–June period (LH, P<0·05; prolactin, P<0·01). The mean diameters of large healthy follicles (≥8 mm diameter) and the dominant oestrogen-secreting follicles were significantly larger (P<0·01 for both follicle types) and each follicle contained more granulosa cells (both P<0·01) in May–June than in October. The LH responsiveness of theca interna with respect to androstenedione production and the levels of aromatase activity in granulosa cells did not differ with time of year. The corpora lutea were heavier (P<0·05) and secreted more progesterone (P<0·01) in May–June than in October. It is concluded that seasonal differences in ovarian activity exist in cows and that these differences are probably the consequence of seasonal differences in gonadotrophin secretion. J. Endocr. (1984) 102, 189–198


1990 ◽  
Vol 127 (3) ◽  
pp. 461-469 ◽  
Author(s):  
E. Ssewannyana ◽  
G. A. Lincoln

ABSTRACT In a group of adult Soay rams housed indoors under an artificial light cycle of alternating 16-week periods of long and short days, there was a conspicuous longterm cycle in the peripheral plasma concentrations of β-endorphin and prolactin. The levels of β-endorphin were highest under short days and lowest under long days (15-fold change), and inversely related to the changes in the plasma levels of prolactin (120-fold change). The role of dopamine in the control of β-endorphin and prolactin was investigated in a series of experiments, conducted under both long and short days, in which rams were treated with dopamine receptor agonists (dopamine and bromocriptine) and antagonists (pimozide and sulpiride). Naloxone (opioid antagonist) was also administered to assess the additional involvement of endogenous opioids. Dopamine injected i.v. (6·6 mg/kg every 10 min) did not significantly affect the mean plasma concentrations of β-endorphin and prolactin under either long or short days. Pimozide (0·08 mg/kg i.m. every 2 h) caused a large increase in the mean plasma concentrations of β-endorphin and prolactin under long days but not short days. Naloxone (1·6 mg/kg, i.v.), administered alone or in combination with dopamine or pimozide, had no effect on the mean plasma concentrations of β-endorphin and prolactin, except under short days when, combined with pimozide, it induced an increase in the plasma concentrations of the two polypeptides. Bromocriptine (0·06 mg/kg, s.c.) caused a significant decrease in the plasma concentrations of both β-endorphin and prolactin; this effect was most marked at the times of increased secretion (under short days for β-endorphin and under long days for prolactin). Sulpiride (0·59 mg/kg, s.c.) produced the converse effect and caused an increase in the plasma concentrations of β-endorphin and prolactin with the amplitude and duration of the effect varying with the stage of the photoperiod-induced cycle. From these results in the Soay ram, we conclude that dopamine inhibits β-endorphin and prolactin secretion by way of D2 receptors under both long and short days. Endogenous opioids interact with dopamine, augmenting this inhibition under short days. Differences in the acute responses in the secretion of β-endorphin and prolactin, and the inverse relationship between β-endorphin and prolactin during the cycle, indicate that different regulatory systems involving dopamine influence the two pituitary polypeptides. Journal of Endocrinology (1990) 127, 461–469


1994 ◽  
Vol 143 (3) ◽  
pp. 441-448 ◽  
Author(s):  
P Dicks ◽  
A J F Russel ◽  
G A Lincoln

Abstract The effects of the suppression or elevation of plasma prolactin concentrations in spring on the timing of the reactivation of the hair follicles and the timing of the spring moult were investigated in cashmere goats. Thirty eight adult female goats, housed under conditions of natural photoperiod at 55°55′N from mid-December until May, were allocated to four groups starting on 5 January: ten served as untreated controls, eight received 2 mg ovine prolactin subcutaneously every 12 h for 7 weeks (PRL), twelve received 35 mg bromocriptine intramuscularly every 14 days for 17 weeks (BCR) and eight received injections of both ovine prolactin and bromocriptine at the above dose rates for 7 weeks (PRL+BCR). In the PRL group there was an earlier reactivation of the secondary hair follicles (PRL vs control, proportion of secondary follicles in anagen, weeks 1–5, P<0·01) associated with an earlier moult of secondary fibres (cashmere) but no significant difference in the activity of the primary hair follicles. In the BCR group there was a delay in the reactivation of both the secondary and primary hair follicles (BCR vs control, proportion of secondary and primary hair follicles in anagen, weeks 5–13, P<0·01) and a delay in the moult. In the PRL+BCR group there was an early reactivation and moult similar to the PRL group. Voluntary food intake (VFI) and liveweight were also measured. Only in the BCR group was there a decrease in VFI compared with the controls but with no effect on liveweight. It was concluded that the seasonal increase in prolactin secretion which normally occurs in spring is causally involved in the reactivation of primary and secondary hair follicles and moulting in cashmere goats. Journal of Endocrinology (1994) 143, 441–448


2003 ◽  
Vol 81 (4) ◽  
pp. 350-358 ◽  
Author(s):  
Peter J Sharp ◽  
Dominique Blache

Seasonal breeding is associated with sequential increases in plasma luteinizing hormone (LH) and prolactin in the short-day breeding emu, and in long-day breeding birds that terminate breeding by the development of reproductive photorefractoriness. A model of the avian neuroendocrine photoperiodic reproductive response is proposed, incorporating a role for prolactin, to account for neuroendocrine mechanisms controlling both long- and short-day breeding. The breeding season terminates after circulating concentrations of prolactin increase above a critical threshold to depress gonadotropin releasing hormone (GnRH) neuronal and gonadotrope (LH) activity. Subsequently, photorefractoriness develops for prolactin secretion and for LH secretion, independently of high plasma prolactin. The breeding season in the emu is advanced compared with long-day breeders, because after photorefractiness for both LH and prolactin secretion is dissipated, plasma concentrations of both hormones increase to maximum values while days are still short.Key words: seasonal breeding, prolactin, gonadotropin releasing hormone, photorefactoriness.


1988 ◽  
Vol 116 (1) ◽  
pp. 115-122 ◽  
Author(s):  
K. Taya ◽  
S. Sasamoto

ABSTRACT To determine whether failure of follicular maturation during the early stages of lactation in rats is due to inadequate LH stimulation, lactating rats nursing eight pups were injected twice daily for 1–3 days (days 2–5 of lactation) with various doses of ovine LH. Follicular maturation was determined by the ability of the follicles to ovulate in response to 10 IU human chorionic gonadotrophin (hCG), endogenous oestradiol-17β and inhibin production. Ovulation was not induced in control animals in response to 10 IU hCG given between days 2 and 5 of lactation. On the other hand, an injection of 10 IU hCG could induce ovulation in LH-treated animals, in which 25 and 50 μg LH per injection were given s.c. from days 2 to 5 of lactation. Concentrations of oestradiol-17β and inhibin activity in ovarian venous plasma increased progressively after the administration of LH, indicating that induced development of ovulatory follicles had occurred. Plasma concentrations of FSH declined in LH-treated animals compared with those in control animals. The decrease in plasma concentrations of FSH was not observed when lactating rats were ovariectomized before the first injection of LH, indicating that ovarian products, probably inhibin, from developing follicles may suppress the secretion of FSH from the pituitary gland. In both LH-treated and control animals, concentrations of prolactin and progesterone remained increased during the period of LH administration. The present results, therefore, suggest that the plasma levels of LH are an important determinant of follicular maturation during lactation in rats. J. Endocr. (1988) 116, 115–122


1995 ◽  
Vol 145 (3) ◽  
pp. 449-454 ◽  
Author(s):  
J Th J Uilenbroek ◽  
P van der Schoot ◽  
J A M Mattheij ◽  
J J M Swarts

Abstract To study the effects of the antiprogestagen RU486 on luteal activity in pseudopregnant rats, adult female rats made pseudopregnant by sterile copulation were given daily injections with oil vehicle or with RU486 (2 mg/day) either during the entire period of pseudopregnancy (day 1 till day 14) or during the second half of pseudopregnancy (day 8 till day 14). Blood was taken every other day to measure serum concentrations of progesterone. At autopsy, on day 15, the weights of ovaries, isolated corpora lutea and pituitary glands were recorded. In a second study using the same experimental protocol, blood was taken via a jugular vein cannula on days 8, 9, 10 and 11 after induction of pseudopregnancy; on each of these days blood samples were taken at 0700, 0800 and 0900 h, and at 1700, 1800 and 1900 h to measure plasma concentrations of prolactin, LH and progesterone. Administration of RU486 from day 1 of pseudopregnancy onwards had no effect on the increasing concentrations of serum progesterone during the first half of pseudopregnancy. Thereafter progesterone concentrations increased further in RU486-treated rats whereas they decreased in oil-treated pseudopregnant rats. Administration of RU486 from day 8 of pseudopregnancy onwards resulted in a decline in progesterone concentrations in serum on day 10 followed by ovulation on day 11. Plasma LH concentrations in rats treated with RU486 from day 1 of pseudopregnancy were higher than those in oil-treated rats on days 8, 9, 10 and 11. Treatment from day 8 of pseudopregnancy resulted in low LH concentrations at days 8 and 9 and the presence of a preovulatory surge of LH on the afternoon of day 10 (day of pro-oestrus). Plasma concentrations of prolactin measured in oil-treated rats showed two daily surges of similar magnitude in the morning and afternoon of days 8, 9, 10 and 11. In animals treated with RU486 from day 8 onwards, the afternoon surge on day 9 and the morning surge on day 10 were absent. This demonstrated that the luteolytic effect of RU486 when given during the second part of pseudopregnancy is due to a blockade in the afternoon surge of prolactin on day 9. In animals treated with RU486 from day 1 of pseudopregnancy onwards, prolactin in the early morning samples was low, while prolactin in the afternoon samples was highly elevated. At autopsy on day 15, the weights of ovaries, corpora lutea and pituitary glands in animals treated with RU486 from day 1 were larger than those in oil-treated rats; this is in line with an increased secretion of prolactin. In contrast, in animals treated with RU486 from day 8, pituitary weight was not elevated and the increase in ovarian weight was due to the presence of two generations of corpora lutea. In conclusion, whether or not RU486 is luteolytic in pseudopregnant rats depends on the time of administration: injection during the second half of pseudopregnancy inhibits prolactin secretion and induces luteolysis, while administration during the early phase of pseudopregnancy results in high concentrations of prolactin in the early afternoon and therefore prevents luteolysis. Journal of Endocrinology (1995) 145, 449–454


1981 ◽  
Vol 90 (3) ◽  
pp. 391-396 ◽  
Author(s):  
R. WEBB ◽  
G. E. LAMMING

Blood samples taken on alternate days through indwelling jugular venous catheters from 12 suckled cows between days 14 and 48 post partum contained significantly less prolactin than samples collected on intermediate days by jugular venepuncture. Samples taken through the catheter every 2 h for 72 h periods revealed a repetitive daily biphasic pattern of prolactin secretion with low concentrations at 09.00 and 19.00 h and high concentrations at 13.00 and 23.00 h. In two groups of cows, one group calving at the beginning of March (increasing photoperiod) and the other calving during June (decreasing photoperiod), there was a significant negative correlation between stage of lactation and plasma prolactin concentrations in samples taken by venepuncture.


Reproduction ◽  
2017 ◽  
Vol 153 (6) ◽  
pp. R187-R204 ◽  
Author(s):  
Dallas A Vanorny ◽  
Kelly E Mayo

The Notch pathway is a contact-dependent, or juxtacrine, signaling system that is conserved in metazoan organisms and is important in many developmental processes. Recent investigations have demonstrated that the Notch pathway is active in both the embryonic and postnatal ovary and plays important roles in events including follicle assembly and growth, meiotic maturation, ovarian vasculogenesis and steroid hormone production. In mice, disruption of the Notch pathway results in ovarian pathologies affecting meiotic spindle assembly, follicle histogenesis, granulosa cell proliferation and survival, corpora luteal function and ovarian neovascularization. These aberrations result in abnormal folliculogenesis and reduced fertility. The knowledge of the cellular interactions facilitated by the Notch pathway is an important area for continuing research, and future studies are expected to enhance our understanding of ovarian function and provide critical insights for improving reproductive health. This review focuses on the expression of Notch pathway components in the ovary, and on the multiple functions of Notch signaling in follicle assembly, maturation and development. We focus on the mouse, where genetic investigations are possible, and relate this information to the human ovary.


1985 ◽  
Vol 104 (2) ◽  
pp. 205-209 ◽  
Author(s):  
A. M. Horn ◽  
H. M. Fraser ◽  
G. Fink

ABSTRACT The possible role of thyrotrophin-releasing hormone (TRH) in causing the pro-oestrous surge of prolactin was investigated in conscious female rats by passive immunization with a specific anti-TRH serum raised in sheep. Blood samples were withdrawn through a previously implanted intra-atrial cannula. The i.p. injection of 1 ml anti-TRH serum, but not non-immune sheep serum, at 13.00 h of pro-oestrus delayed by about 1 h the onset of the prolactin surge, but the peak of the surge was similar to that in animals injected with the non-immune serum. The plasma concentrations of TSH were significantly reduced by the anti-TRH serum, but plasma concentrations of LH were not significantly affected. These results show that TRH may play an important role in the timing and initiation, but not the maintenance of the prolactin surge in the pro-oestrous rat. J. Endocr. (1985) 104, 205–209


Sign in / Sign up

Export Citation Format

Share Document