scholarly journals Causes of T lymphocyte activation in HIV-infected patients coinfected with hepatitis C virus

2016 ◽  
Vol 88 (11) ◽  
pp. 22-28
Author(s):  
K V Shmagel ◽  
N G Shmagel ◽  
L B Korolevskaya ◽  
E V Saydakova ◽  
V A Chereshnev

Aim. To establish the causes of T lymphocyte activation in human immunodeficiency virus (HIV)-infected patients coinfected with hepatitis C (HCV) who are adherent to their antiretroviral therapy regimen and interferon untreated. Subjects and methods. Examinations were made in 62 people who were HIV+HCV-positive (n=21), HIV+HCV-negative (n=21), and noninfected volunteers (n=20). The activation (CD38+HLA-DR+) and proliferation (Ki-67+) of CD4+ and CD8+ T lymphocytes were estimated. The blood concentration of intestinal fatty acid-binding protein (I-FABP) was determined. Results. The proportion of activated cells among the CD4+ T lymphocytes was equal in the HIV+HCV-positive and HIV+HCV-negative groups. But these indicators were statistically significantly higher than those in the controls (HIV- HCV-). CD8+ T cell activation was greater in the HIV/HCV-coinfected patients than that in the other groups and that was higher in the HIV monoinfected than in the noninfected. The blood I-FABP concentrations were elevated in the HIV+HCV-positive and HIV+HCV groups compared with those in the HIV-HCV-negative group, but these did not differ among themselves. In the HIV+HCV-negative patients, CD4+ and CD8+ T cell activation directly and statistically significantly correlated with blood I-FABP levels. In the HIV+HCV-positive group, this correlation remained only for CD4+ T lymphocytes. CD8+ T cell activation in HIV/HCV-coinfected patients was unrelated to I-FABP concentrations. Conclusion. The increased activation of CD4+ and CD8+ T lymphocytes in HIV monoinfection was found to be associated with intestinal epithelial destruction and unrelated to cell division processes. In HIV/HCV coinfection, the activated state of CD4+ T cells is determined by both the level of proliferative processes and impairment of the intestinal barrier and that of CD8+ T cells is only by proliferation.

2000 ◽  
Vol 74 (16) ◽  
pp. 7320-7330 ◽  
Author(s):  
Linda A. Trimble ◽  
Premlata Shankar ◽  
Mark Patterson ◽  
Johanna P. Daily ◽  
Judy Lieberman

ABSTRACT Although human immunodeficiency virus (HIV)-infected subjects without AIDS have a high frequency of HIV-specific CD8 T lymphocytes, cellular immunity is unable to control infection. Freshly isolated lymphocytes often do not lyse HIV-infected targets in 4-h cytotoxicity assays. A large fraction of circulating CD8 T cells from HIV-infected donors down-modulate CD3ζ, the signaling component of the T-cell receptor complex, which is reexpressed in vitro coincident with the return of cytotoxic function. To investigate further the link between CD3ζ down-modulation and possible CD8 T-cell functional defects, we used flow cytometry to characterize further the properties of the CD3ζ-down-modulated subset. HIV-specific CD8 T cells, identified by tetramer staining, are CD3ζ−. CD8 T cells with down-modulated CD3ζ also do not express the key costimulatory receptor CD28 and have the cell surface phenotype of activated or memory T cells (HLA-DR+ CD62L−). After T-cell activation, CD3ζ-down-modulated cells express the activation marker CD69 but not the high-affinity interleukin 2 (IL-2) receptor α-chain CD25 and produce gamma interferon but not IL-2. Therefore HIV-specific CD8 T cells have down-modulated key signaling molecules for T-cell activation and costimulation and require exogenous cytokine stimulation. The typical impairment of HIV-specific CD4 T helper cells, which would normally provide specific CD8 T-cell stimulation, means that in vivo CTL function in vivo is compromised in most HIV-infected individuals. In AIDS patients, the functional defect is more severe, since CD3ζ is not reexpressed even after IL-2 exposure.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Ting Li ◽  
Fenggen Yan ◽  
Rui Wang ◽  
Hua Zhou ◽  
Liang Liu

The key role of T cells has been elaborated in mediating immune responses and pathogenesis of human inflammatory and autoimmune conditions. In the current study the effect of shikonin, a compound isolated from a medicinal plant, on inhibition of T-cell activation was firstly examined by using primary human T lymphocytes isolated from buffy coat. Results showed that shikonin dose dependently suppressed T-cell proliferation, IL-2 and IFN-γsecretion, CD69 and CD25 expression, as well as cell cycle arrest activated by costimulation of PMA/ionomycin or OKT-3/CD28 monoclonal antibodies. Moreover, these inhibitory responses mediated by shikonin were found to be associated with suppression of the NF-κB signaling pathway via inhibition of the IKKα/βphosphorylation, IκB-αphosphorylation and degradation, and NF-κB nuclear translocation by directly decreasing IKKβactivity. Moreover, shikonin suppressed JNK phosphorylation in the MAPKs pathway of T cells. In this connection, we conclude that shikonin could suppress T lymphocyte activation through suppressing IKKβactivity and JNK signaling, which suggests that shikonin is valuable for further investigation as a potential immunosuppressive agent.


Blood ◽  
2007 ◽  
Vol 109 (10) ◽  
pp. 4320-4327 ◽  
Author(s):  
Jin-Sung Chung ◽  
Kota Sato ◽  
Irene I. Dougherty ◽  
Ponciano D. Cruz ◽  
Kiyoshi Ariizumi

Abstract T-cell activation is the net product of competing positive and negative signals transduced by regulatory molecules on antigen-presenting cells (APCs) binding to corresponding ligands on T cells. Having previously identified DC-HIL as a receptor expressed by APCs that contains an extracellular immunoglobulin (Ig)–like domain, we postulated that it plays a role in T-cell activation. To probe this function, we created soluble recombinant DC-HIL, which we observed to bind activated (but not resting) T cells, indicating that expression of the putative ligand on T cells is induced by activation. Binding of DC-HIL to naive T cells attenuated these cells' primary response to anti-CD3 antibody, curtailing IL-2 production, and preventing entry into the cell cycle. DC-HIL also inhibited reactivation of T cells previously activated by APCs (secondary response). By contrast, addition of soluble DC-HIL to either allogeneic or ovalbumin-specific lymphocyte reactions augmented T-cell proliferation, and its injection into mice during the elicitation (but not sensitization) phase of contact hypersensitivity exacerbated ear-swelling responses. Mutant analyses showed the inhibitory function of DC-HIL to reside in its extracellular Ig-like domain. We conclude that endogenous DC-HIL is a negative regulator of T lymphocyte activation, and that this native inhibitory function can be blocked by exogenous DC-HIL, leading to enhanced immune responses.


Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2212
Author(s):  
Juan Pablo Cerapio ◽  
Marion Perrier ◽  
Fréderic Pont ◽  
Marie Tosolini ◽  
Camille Laurent ◽  
...  

The detailed characterization of human γδ T lymphocyte differentiation at the single-cell transcriptomic (scRNAseq) level in tumors and patients with coronavirus disease 2019 (COVID-19) requires both a reference differentiation trajectory of γδ T cells and a robust mapping method for additional γδ T lymphocytes. Here, we incepted such a method to characterize thousands of γδ T lymphocytes from (n = 95) patients with cancer or adult and pediatric COVID-19 disease. We found that cancer patients with human papillomavirus-positive head and neck squamous cell carcinoma and Epstein–Barr virus-positive Hodgkin’s lymphoma have γδ tumor-infiltrating T lymphocytes that are more prone to recirculate from the tumor and avoid exhaustion. In COVID-19, both TCRVγ9 and TCRVγnon9 subsets of γδ T lymphocytes relocalize from peripheral blood mononuclear cells (PBMC) to the infected lung tissue, where their advanced differentiation, tissue residency, and exhaustion reflect T cell activation. Although severe COVID-19 disease increases both recruitment and exhaustion of γδ T lymphocytes in infected lung lesions but not blood, the anti-IL6R therapy with Tocilizumab promotes γδ T lymphocyte differentiation in patients with COVID-19. PBMC from pediatric patients with acute COVID-19 disease display similar γδ T cell lymphopenia to that seen in adult patients. However, blood γδ T cells from children with the COVID-19-related multisystem inflammatory syndrome are not lymphodepleted, but they are differentiated as in healthy PBMC. These findings suggest that some virus-induced memory γδ T lymphocytes durably persist in the blood of adults and could subsequently infiltrate and recirculate in tumors.


1990 ◽  
Vol 110 (5) ◽  
pp. 1757-1766 ◽  
Author(s):  
W Risau ◽  
B Engelhardt ◽  
H Wekerle

The endothelial blood-brain barrier (BBB) has a critical role in controlling lymphocyte traffic into the central nervous system (CNS), both in physiological immunosurveillance, and in its pathological aberrations. The intercellular signals that possibly could induce lymphocytes to cross the BBB include immunogenic presentation of protein (auto-)antigens by BBB endothelia to circulating T lymphocytes. This concept has raised much, though controversial, attention. We approached this problem by analyzing in vitro immunospecific interactions between clonal rat T lymphocyte lines with syngeneic, stringently purified endothelial monolayer cultures from adult brain micro-vessels. The rat brain endothelia (RBE) were established from rat brain capillaries using double collagenase digestion, density gradient fractionation and selective cytolysis of contaminating pericytes by anti-Thy 1.1 antibodies and complement. Incubation with interferon-gamma in most of the brain-derived endothelial cells induced Ia-antigens in the cytoplasm and on the cell surface in some of the cells. Before the treatment, the cells were completely Ia-negative. Pericytes were unresponsive to IFN-gamma treatment. When confronted with syngeneic T cell lines specific for protein (auto-)antigens (e.g., ovalbumin and myelin basic protein, MBP), RBE were completely unable to induce antigen-specific proliferation of syngeneic T lymphocytes irrespective of pretreatment with IFN-gamma and of cell density. RBE were inert towards the T cells, and did not suppress T cell activation induced by other "professional" antigen presenting cells (APC) such as thymus-derived dendritic cells or macrophages. IFN-gamma-treated RBE were, however, susceptible to immunospecific T cell killing. They were lysed by MBP-specific T cells in the presence of the specific antigen or Con A. Antigen dependent lysis was restricted by the appropriate (MHC) class II product. We conclude that the interaction of brain endothelial cells with encephalitogenic T lymphocytes may involve recognition of antigen in the molecular context of relevant MHC products, but that this interaction per se is insufficient to initiate the full T cell activation program.


Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Antoine Caillon ◽  
Pierre Paradis ◽  
Ernesto L Schiffrin

Objective: Both innate (monocyte/macrophages) and adaptive immune cells (T lymphocytes) have been shown to play a role in the development of vascular injury in hypertension. Recently, we demonstrated that a small subset of “innate-like” T lymphocytes, expressing the γ/δ T cell receptor (TCR) rather than the αβ TCR, plays a key role in hypertension and vascular injury. We demonstrated an increased number and activation (CD69 + ) of γδ T cells during the development of hypertension caused by angiotensin (Ang) II infusion, and that deficiency in γδ T cells prevented Ang II-induced hypertension, resistance artery endothelial dysfunction and spleen T-cell activation in mice. We hypothesized that γδ T cells mediate activation of other T cells in hypertension. Method and Results: Fourteen to 15-week old male C57BL/6 wild-type (WT) mice were infused with Ang II (490 ng/kg/min, SC) for 3, 7 and 14 days (n=5-7) and spleen T cell profile was determined by flow cytometry. A correlation was demonstrated between the frequency (FREQ) and the number (#) of activated CD69 + γδ T cells and CD4 + CD69 + T cells (FREQ: r=0.41, P <0.05 and #: r=0.58, P <0.001) and CD8 + CD69 + T cells (FREQ: r=0.36, P <0.05 and #: r=0.50, P <0.01). We also demonstrated a high correlation between the # of CD69 + γδ T cells expressing CD27, a marker of interferon-γ expressing cells and a member of the T-T interaction molecules, with CD4 + CD69 + (r=0.88, P <0.001) and CD8 + CD69 + (r=0.81, P <0.01) T cells after 7 days of Ang II infusion. Conclusion: This study demonstrated an association between CD27 + CD69 + γδ T cells and activated T cells. These results suggest that γδ T cells drive activation of other T cells in Ang II-induced hypertension. Targeting γδ T cells may contribute to reduce inflammation in hypertension.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e14565-e14565
Author(s):  
Amit Adhikari ◽  
Juliete Macauley ◽  
Yoshimi Johnson ◽  
Mike Connolly ◽  
Tim Coleman ◽  
...  

e14565 Background: Glioblastoma (GBM) is an aggressive form of brain cancer with a median survival of 15 months which has remained unchanged despite technological advances in the standard of care. GBM cells specifically express human cytomegalovirus (HCMV) proteins providing a unique opportunity for targeted therapy. Methods: We utilized our UNITE (UNiversal Intracellular Targeted Expression) platform to develop a multi-antigen DNA vaccine (ITI-1001) that codes for the HCMV proteins- pp65, gB and IE-1. The UNITE platform involves lysosomal targeting technology, fusing lysosome-associated protein 1 (LAMP1) with target antigens resulting in increased antigen presentation by MHC-I and II. ELISpot, flow cytometry and ELISA techniques were used to evaluate the vaccine immunogenicity and a syngeneic, orthotopic GBM mouse model that expresses HCMV proteins was used for efficacy studies. The tumor microenvironment studies were done using flow cytometry and MSD assay. Results: ITI-1001 vaccination showed a robust antigen-specific CD4 and CD8 T cell response in addition to a strong humoral response. Using GBM mouse model, therapeutic treatment of ITI-1001 vaccine resulted in ̃56% survival with subsequent long-term immunity. Investigating the tumor microenvironment showed significant CD4 T cell infiltration as well as enhanced Th1 and CD8 T cell activation. Regulatory T cells were also upregulated upon ITI-1001 vaccination and would be an attractive target to further improve this therapy. In addition, tumor burden negatively correlated with number of activated CD4 T cells (CD4 IFNγ+) reiterating the importance of CD4 activation in ITI-1001 efficacy and potentially identifying treatment responders and non-responders. Further characterization of these two groups showed high infiltration of CD3+, CD4+ and CD8+ T cells in responders compared with non- responders along with higher CD8 T cell activation. Conclusions: Thus, we show that vaccination with HCMV antigens using the ITI-1001-UNITE platform generates strong cellular and humoral immune responses, triggering significant anti-tumor activity that leads to enhanced survival in mice with GBM.


Hypertension ◽  
2018 ◽  
Vol 72 (Suppl_1) ◽  
Author(s):  
Pierre Paradis ◽  
Antoine Caillon ◽  
Ernesto L Schiffrin

2020 ◽  
Vol 11 ◽  
Author(s):  
Marie-Line Puiffe ◽  
Aurélie Dupont ◽  
Nouhoum Sako ◽  
Jérôme Gatineau ◽  
José L. Cohen ◽  
...  

IL4I1 is an immunoregulatory enzyme that inhibits CD8 T-cell proliferation in vitro and in the tumoral context. Here, we dissected the effect of IL4I1 on CD8 T-cell priming by studying the differentiation of a transgenic CD8 T-cell clone and the endogenous repertoire in a mouse model of acute lymphocytic choriomeningitis virus (LCMV) infection. Unexpectedly, we show that IL4I1 accelerates the expansion of functional effector CD8 T cells during the first several days after infection and increases the average affinity of the elicited repertoire, supporting more efficient LCMV clearance in WT mice than IL4I1-deficient mice. Conversely, IL4I1 restrains the differentiation of CD8 T-cells into long-lived memory precursors and favors the memory response to the most immunodominant peptides. IL4I1 expression does not affect the phenotype or antigen-presenting functions of dendritic cells (DCs), but directly reduces the stability of T-DC immune synapses in vitro, thus dampening T-cell activation. Overall, our results support a model in which IL4I1 increases the threshold of T-cell activation, indirectly promoting the priming of high-affinity clones while limiting memory T-cell differentiation.


Sign in / Sign up

Export Citation Format

Share Document