scholarly journals CALCULATION OF 2-DIMENSIONAL PWR MOX/UO2 CORE BENCHMARK OECD NEA 6048 WITH SRAC CODE

2020 ◽  
Vol 22 (3) ◽  
pp. 89
Author(s):  
Wahid Luthfi ◽  
Surian Pinem

The mixed uranium-plutonium oxide fuel (MOX/UO2) is an interesting fuel for future power reactors. This is due to the large amount of plutonium that can be processed from spent fuel of nuclear plants or from plutonium weapons. MOX/UO2 fuel is very flexible to be applied in thermal reactors such as PWR and it is more economical than UO2 fuel. However, due to the different nature of neutron interactions of MOX in PWR, it will change the reactor core design parameters and also its safety characteristic. The purpose of this study is to determine the accuracy of SRAC2006 code system in generation of cross-sections and calculation of reactor core design parameters such as criticality, reactivity of control rods and radial power distribution. In this study, PWR MOX/UO2 Core Transient Benchmark is used to verify the code that models a MOX/UO2 fueled core. SRAC-CITATION result is different from DeCART by 0.339% from. SRAC-CITATION result of single rod worth in All Rods Out (ARO) conditions are quite good with a maximum difference of 6.34% compared to BARS code and 4.74% compared to PARCS code. In All Rods In (ARI) condition, SRAC-CITATION results compared to the PARCS code is quite good where the maximum difference is 9.72%, but compared to BARS code, it spikes up to 33.24% at maximum difference. In the other case, overall radial power density results are quite good compared to the reference. Its maximum deviation from DeCART code is 5.325% in ARO condition and 6.234% in ARI condition. Based on the results of these calculations, SRAC code system can be used to generate cross-section and to calculate some neutronic parameters. Hence, it can be used to evaluate the neutronic parameters of the MOX/UO2 PWR core design.Keywords: MOX/UO2 fuel, Criticality, Power peaking factor, SRAC2006

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Wonkyeong Kim ◽  
Jinsu Park ◽  
Tomasz Kozlowski ◽  
Hyun Chul Lee ◽  
Deokjung Lee

A high-leakage core has been known to be a challenging problem not only for a two-step homogenization approach but also for a direct heterogeneous approach. In this paper the DIMPLE S06 core, which is a small high-leakage core, has been analyzed by a direct heterogeneous modeling approach and by a two-step homogenization modeling approach, using contemporary code systems developed for reactor core analysis. The focus of this work is a comprehensive comparative analysis of the conventional approaches and codes with a small core design, DIMPLE S06 critical experiment. The calculation procedure for the two approaches is explicitly presented in this paper. Comprehensive comparative analysis is performed by neutronics parameters: multiplication factor and assembly power distribution. Comparison of two-group homogenized cross sections from each lattice physics codes shows that the generated transport cross section has significant difference according to the transport approximation to treat anisotropic scattering effect. The necessity of the ADF to correct the discontinuity at the assembly interfaces is clearly presented by the flux distributions and the result of two-step approach. Finally, the two approaches show consistent results for all codes, while the comparison with the reference generated by MCNP shows significant error except for another Monte Carlo code, SERPENT2.


Kerntechnik ◽  
2021 ◽  
Vol 86 (4) ◽  
pp. 302-311
Author(s):  
M. E. Korkmaz ◽  
N. K. Arslan

Abstract Sodium Cooled Reactors is one of the Generation-IV plants selected to manage the long-lived minor actinides and to transmute the long-life radioactive elements. This study presents the comparison between two-designed SFR cores with 600 and 800 MWth total heating power. We have analyzed a conceptual core design and nuclear characteristic of SFR. Monte Carlo depletion calculations have been performed to investigate essential characteristics of the SFR core. The core calculations were performed by using the Serpent Monte Carlo code for determining the burnup behavior of the SFR, the power distribution and the effective multiplication factor. The neutronic and burn-up calculations were done by means of Serpent-2 Code with the ENDF-7 cross-sections library. Sodium Cooled Fast Reactor core was taken as the reference core for Th-232 burnup calculations. The results showed that SFR is an important option to deplete the minor actinides as well as for transmutation from Th-232 to U-233.


2021 ◽  
Vol 27 (1) ◽  
pp. 47
Author(s):  
Wahid Luthfi ◽  
Surian Pinem

VALIDATION OF SRAC CODE SYSTEM FOR NEUTRONIC PARAMETERS CALCULATION OF THE PWR MOX/UO2 CORE BENCHMARK. Determination of neutronic parameter value is an important part in determining reactor safety, so accurate calculation results can be obtained. This study is focused on the validation of SRAC code system in the calculation of neutronic parameters value of a PWR (Pressurized Water Reactor) reactor core. MOX/UO2 Core Benchmark was choosed because it is used by several researchers as a reference core for code validation in the determination of neutronic parameters of a reactor core. The neutronic parameters calculated include critical boron concentration, delayed neutron fraction, and Power Peaking Factor (PPF) and its distribution in axial and radial directions. When compared with reference data, the calculation results of the critical boron concentration value show that there is a difference of 22.5 ppm on SRAC code system. Meanwhile, differences in power per fuel element (assembly power error) value of power-weighted error (PWE) and error-weighted error (EWE) is 2.93% and 3.94%, respectively. Maximum difference between PPF value in axial direction with reference reaches a value of 4.57%. SRAC calculation results also show consistency with the calculation results of other program packages or code. Results of this study indicate that SRAC code system is still quite accurate for the calculation of neutronic parameters of PWR reactor core benchmark. Therefore, SRAC code system can be used to calculate neutronic parameters of PWR reactor core, especially when using MOX (mixed oxide) fuel.Keywords: Neutronic parameter, critical boron concentration, power peaking factor, SRAC code system.


Author(s):  
Xiaosheng Li ◽  
Linsen Li ◽  
Lianghui Peng ◽  
Xiaosong Chen ◽  
Zhaocan Meng ◽  
...  

The pressure and coolant temperature of Heating-reactor of Advanced low-Pressurized and Passive safetY system (HAPPY200) is significantly lower than PWR of the NPP, the core design and analysis were completed according to the design parameters and features of HAPPY200. The fuel assembly and its feature was firstly designed and studied based on the investigation of different types of fuel assemblies. Then the core configuration was studied and optimized according to the design parameters of HAPPY200; Eventually, neutronics calculation of the core was performed and key parameters were obtained including cycle length, power distribution, control rod worth, reactivity coefficients and etc. The study shows that with the core design HAPPY200 can be operated for 18 months in full power and reactivity control system can maintain criticality of the core in the full cycle. Due to the non-soluble boron design of the reactivity control scheme, moderator temperature coefficient and isothermal temperature coefficient are both negative, the Doppler temperature coefficients and power coefficients in different phase of the lifetime and in different power levels are also negative, therefore, the reactivity safety of the reactor core can be ensured.


Author(s):  
Zhixiong Tan ◽  
Jiejin Cai

After Fukushima Daiichi Nuclear Power Plant accident, alternative fuel-design to enhance tolerance for severe accident conditions becomes particularly important. Silicon carbide (SiC) cladding fuel assembly gain more safety margin as novel accident tolerant fuel. This paper focuses on the neutron properties of SiC cladding fuel assembly in pressurized water reactors. Annular fuel pellet was adopted in this paper. Two types of silicon carbide assemblies were evaluated via using lattice calculation code “dragon”. Type one was consisted of 0.057cm SiC cladding and conventional fuel. Type two was consisted of 0.089cm SiC cladding and BeO/UO2 fuel. Compared the results of SiC cladding fuel assembly neutronic parameters with conventional Zircaloy cladding fuel assembly, this paper analyzed the safety of neutronic parameters performance. Results demonstrate that assembly-level reactivity coefficient is kept negative, meanwhile, the numerical value got a relatively decrease. Other parameters are conformed to the design-limiting requirement. SiC kinds cladding show more flat power distribution. SiC cases also show the ability of reducing the enrichment of fuel pellets even though it has higher xenon concentration. These types of assembly have broadly agreement neutron performance with the conventional cladding fuel, which confirmed the acceptability of SiC cladding in the way of neutron physics analysis.


2021 ◽  
Vol 2 (2) ◽  
pp. 207-214
Author(s):  
Thinh Truong ◽  
Heikki Suikkanen ◽  
Juhani Hyvärinen

In this paper, the conceptual design and a preliminary study of the LUT Heating Experimental Reactor (LUTHER) for 2 MWth power are presented. Additionally, commercially sized designs for 24 MWth and 120 MWth powers are briefly discussed. LUTHER is a scalable light-water pressure-channel reactor designed to operate at low temperature, low pressure, and low core power density. The LUTHER core utilizes low enriched uranium (LEU) to produce low-temperature output, targeting the district heating demand in Finland. Nuclear power needs to contribute to the decarbonizing of the heating and cooling sector, which is a much more significant greenhouse gas emitter than electricity production in the Nordic countries. The main principle in the development of LUTHER is to simplify the core design and safety systems, which, along with using commercially available reactor components, would lead to lower fabrication costs and enhanced safety. LUTHER also features a unique design with movable individual fuel assembly for reactivity control and burnup compensation. Two-dimensional (2D) and three-dimensional (3D) fuel assemblies and reactor cores are modeled with the Serpent Monte Carlo reactor physics code. Different reactor design parameters and safety configurations are explored and assessed. The preliminary results show an optimal basic core design, a good neutronic performance, and the feasibility of controlling reactivity by moving fuel assemblies.


Author(s):  
Jing Chen ◽  
Dalin Zhang ◽  
Suizheng Qiu ◽  
Kui Zhang ◽  
Mingjun Wang ◽  
...  

As the first developmental step of the sodium-cooled fast reactor (SFR) in China, the pool-type China Experimental Fast Reactor (CEFR) is equipped with the openings and inter-wrapper space in the core, which act as an important part of the decay heat removal system. The accurate prediction of coolant flow in the reactor core calls for complete three-dimensional calculations. In the present study, an investigation of thermal-hydraulic behaviors in a 180° full core model similar to that of CEFR was carried out using commercial Computational Fluid Dynamics (CFD) software. The actual geometries of the peripheral core baffle, fluid channels and narrow inter-wrapper gap were built up, and numerous subassemblies (SAs) were modeled as the porous medium with appropriate resistance and radial power distribution. First, the three-dimensional flow and temperature distributions in the full core under normal operating condition are obtained and quantitatively analyzed. And then the effect of inter-wrapper flow (IWF) on heat transfer performance is evaluated. In addition, the detailed flow path and direction in local inter-wrapper space including the internal and outlet regions are captured. This work can provide some valuable understanding of the core thermal-hydraulic phenomena for the research and design of SFRs.


2020 ◽  
Vol 9 (3) ◽  
pp. 724
Author(s):  
Syazwani Mohd Fadzil ◽  
Shafi Qureshi ◽  
Sekhar Basu ◽  
K. Kasturirangan ◽  
Anil Kakodkar ◽  
...  

Here, safer nuclear fuels which can sustain in the high temperature and fluence environment of the reactor core are investigated to utilize nuclear energy peacefully. At Nuclear Fuel Complex in Hyderabad, nuclear fuels are being manufactured which are best suited for high temperature and fluence environment of the reactor core even in accidental scenarios. In this paper, nuclear fuels manufactured at NFC, Hyderabad are presented. The developed nuclear fuels have higher equivalent hydraulic diameter and breeding capability to produce U^233. Nuclear fuels having higher equivalent hydraulic diameter reduce the reactor core temperature substantially. These fuels have negative temperature coefficient of reactivity. Thus, in case of an accident, the fuel temperature never exceeds the safety limit. Therefore, the thermal heat available across the secondary of a heat exchanger can be utilized for different industrial processes. This allows the development of key technologies, such as safer co-generation of electricity and Hydrogen. The Three-Stage Indian Nuclear Power Program has been explained for nuclear disarmament. The product Hydrogen gas has been utilized in many ways for different applications. Moreover, the processing of iron ore with the energy obtained from the IHX secondary side, eliminates the burning of coals and CO2 emissions into the environment. Several radioisotopes have been developed for medical applications from spent fuel.  


Author(s):  
S. M. Dmitriev ◽  
A. V. Gerasimov ◽  
A. A. Dobrov ◽  
D. V. Doronkov ◽  
A. N. Pronin ◽  
...  

The article presents the results of experimental studies of the local hydrodynamics of the coolant flow in the mixed core of the VVER reactor, consisting of the TVSA-T and TVSA-T mod.2 fuel assemblies. Modeling of the flow of the coolant flow in the fuel rod bundle was carried out on an aerodynamic test stand. The research was carried out on a model of a fragment of a mixed core of a VVER reactor consisting of one TVSA-T segment and two segments of the TVSA-T.mod2. The flow pressure fields were measured with a five-channel pneumometric probe. The flow pressure field was converted to the direction and value of the coolant velocity vector according to the dependencies obtained during calibration. To obtain a detailed data of the flow, a characteristic cross-section area of the model was selected, including the space cross flow between fuel assemblies and four rows of fuel rods of each of the TVSA fuel assemblies. In the framework of this study the analysis of the spatial distribution of the projections of the velocity of the coolant flow was fulfilled that has made it possible to pinpoint regularities that are intrinsic to the coolant flowing around spacing, mixing and combined spacing grates of the TVSA. Also, the values of the transverse flow of the coolant caused by the flow along hydraulically nonidentical grates were determined and their localization in the longitudinal and cross sections of the experimental model was revealed. Besides, the effect of accumulation of hydrodynamic flow disturbances in the longitudinal and cross sections of the model caused by the staggered arrangement of hydraulically non-identical grates was determined. The results of the study of the coolant cross flow between fuel assemblies interaction, i.e. between the adjacent TVSA-T and TVSA-T mod.2 fuel assemblies were adopted for practical use in the JSC of “Afrikantov OKB Mechanical Engineering” for assessing the heat engineering reliability of VVER reactor cores; also, they were included in the database for verification of computational hydrodynamics programs (CFD codes) and for detailed cell-based calculation of the reactor core.


Sign in / Sign up

Export Citation Format

Share Document