scholarly journals Review of the radiographic modalities used during dental implant therapy - A narrative

2021 ◽  
Vol 76 (2) ◽  
pp. 84-90
Author(s):  
Khaled R Beshtawi ◽  
Mogammad T Peck ◽  
Manogari Chetty

The introduction of digital x-ray receivers which replaced conventional films was a significant radiographic development that is commonly used in daily dental practice. Dental implant therapy (DIT) is a sought after dental therapeutic intervention and dental radiography is an essential component contributing to the success of treatment. Dental radiographs taken in daily practice are generally conventional two-dimensional images and/or three-dimensional images. Ideally, the choice of radiographic technique should be determined after a thorough clinical examination and comprehensive consideration of the advantages, indications, and drawbacks. Digital three-dimensional modalities that have emerged over the last decade have been incorporated into DIT with the assumption that treatment outcomes will be improved. These modalities are constantly being reassessed and improved but there is a paucity of published information regarding the assessment of variables such as dosages and dimensional accuracy, suggesting that further research in these matters is necessary. This is crucial in order to obtain evidence-based information that may influence future radiographic practices. In this narrative, the authors present the most commonly used dental radiographic modalities currently used in DIT.

2021 ◽  
Vol 76 (08) ◽  
pp. 448-456
Author(s):  
Khaled R Beshtawi ◽  
Mogammad T Peck ◽  
Hussein M Mahmoud ◽  
Manogari Chetty

To document the types of imaging modalities that are commonly prescribed during dental implant therapy in South Africa. The radiographic preferences were obtained from practitioners via an electronic survey that was disseminated during local dental conferences, electronic channels (e.g., email lists) of multiple dental schools and local dental scientific societies, and personal interviews. The survey consisted of multiple-choice questions which were designed to investigate the most common radiographic prescriptions during various treatment phases of implant therapy. The responses of one hundred and forty-two participants (General practitioners and dental specialists) practising in different South African provinces were collected and assessed. Principally, panoramic radiographs combined with cone beam computed tomography (PAN + CBCT) followed by CBCT, as a single examination (ASE), were the most preferable modalities during the implant planning phase (39% and 29%, respectively). During and directly after the surgery, periapical radiographs (ASE) were the most preferred (87% and 65%, respectively). The most widely preferred radiographic examination during the planning of implants was panoramic radiographs combined with CBCT. Periapical radiographs (ASE) were favoured during, directly after the treatment, and during the follow-up of asymptomatic patients by the majority of participants. However, CBCT (ASE) was preferred in the follow up of symptomatic patients. Factors related to extra anatomical information and superior dimensional accuracy provided by three-dimensional volumes (e.g., CBCT volumes), were the most indicated influencing factors on the radiographic prescriptions during implant planning.


2021 ◽  
Vol 9 (1) ◽  
pp. 3-6
Author(s):  
Kritika Rajan ◽  
Ishan Roy Choudhury

For any dental implant procedure that is being carried out, the success will depend on a thorough pre-operative investigation. The quality, quantity and the volume of available bone at the planned implant site has to be assessed properly when planning a dental implant placement. When we speak of the fore-mentioned aspects pre-surgical imaging and its co-relation to clinical findings help assess the relation to the amount of bone available from underlying vital parts namely the sinus cavities, nasal floor, nerves, teeth and vessels. Different radiographic modalities have been advocated for its assessment. Intra Oral Peri-apical radiograph (two-dimensional) is one such modality that has lost its importance after the introduction of more advanced techniques like Cone Beam Tomography (three-dimensional). This article will help us understand how two-dimensional and three-dimensional imaging modalities go hand in hand while treating dental patients. It will also explain why the conventional imaging technologies are still required in this era of modern methods of imaging.


Author(s):  
James A. Lake

The understanding of ribosome structure has advanced considerably in the last several years. Biochemists have characterized the constituent proteins and rRNA's of ribosomes. Complete sequences have been determined for some ribosomal proteins and specific antibodies have been prepared against all E. coli small subunit proteins. In addition, a number of naturally occuring systems of three dimensional ribosome crystals which are suitable for structural studies have been observed in eukaryotes. Although the crystals are, in general, too small for X-ray diffraction, their size is ideal for electron microscopy.


Author(s):  
S. Cusack ◽  
J.-C. Jésior

Three-dimensional reconstruction techniques using electron microscopy have been principally developed for application to 2-D arrays (i.e. monolayers) of biological molecules and symmetrical single particles (e.g. helical viruses). However many biological molecules that crystallise form multilayered microcrystals which are unsuitable for study by either the standard methods of 3-D reconstruction or, because of their size, by X-ray crystallography. The grid sectioning technique enables a number of different projections of such microcrystals to be obtained in well defined directions (e.g. parallel to crystal axes) and poses the problem of how best these projections can be used to reconstruct the packing and shape of the molecules forming the microcrystal.Given sufficient projections there may be enough information to do a crystallographic reconstruction in Fourier space. We however have considered the situation where only a limited number of projections are available, as for example in the case of catalase platelets where three orthogonal and two diagonal projections have been obtained (Fig. 1).


Author(s):  
H.W. Deckman ◽  
B.F. Flannery ◽  
J.H. Dunsmuir ◽  
K.D' Amico

We have developed a new X-ray microscope which produces complete three dimensional images of samples. The microscope operates by performing X-ray tomography with unprecedented resolution. Tomography is a non-invasive imaging technique that creates maps of the internal structure of samples from measurement of the attenuation of penetrating radiation. As conventionally practiced in medical Computed Tomography (CT), radiologists produce maps of bone and tissue structure in several planar sections that reveal features with 1mm resolution and 1% contrast. Microtomography extends the capability of CT in several ways. First, the resolution which approaches one micron, is one thousand times higher than that of the medical CT. Second, our approach acquires and analyses the data in a panoramic imaging format that directly produces three-dimensional maps in a series of contiguous stacked planes. Typical maps available today consist of three hundred planar sections each containing 512x512 pixels. Finally, and perhaps of most import scientifically, microtomography using a synchrotron X-ray source, allows us to generate maps of individual element.


Author(s):  
Sterling P. Newberry

The beautiful three dimensional representation of small object surfaces by the SEM leads one to search for ways to open up the sample and look inside. Could this be the answer to a better microscopy for gross biological 3-D structure? We know from X-Ray microscope images that Freeze Drying and Critical Point Drying give promise of adequately preserving gross structure. Can we slice such preparations open for SEM inspection? In general these preparations crush more readily than they slice. Russell and Dagihlian got around the problem by “deembedding” a section before imaging. This some what defeats the advantages of direct dry preparation, thus we are reluctant to accept it as the final solution to our problem. Alternatively, consider fig 1 wherein a freeze dried onion root has a window cut in its surface by a micromanipulator during observation in the SEM.


Sign in / Sign up

Export Citation Format

Share Document