scholarly journals Anaerobic digestion of donkey dung for biogas production

2016 ◽  
Vol Volume 112 (Number 7/8) ◽  
Author(s):  
Patrick Mukumba ◽  
Golden Makaka ◽  
Sampson Mamphweli ◽  
◽  
◽  
...  

Abstract Biogas can provide a solution to some of South Africa’s energy needs, especially in rural areas of Eastern Cape Province that have plentiful biogas substrates from donkeys, goats, sheep, cattle and chicken. We investigated the effectiveness of donkey dung for biogas production using a designed and constructed cylindrical field batch biogas digester. The donkey dung was collected from the University of Fort Hare’s Honeydale Farm and was analysed for total solids, volatile solids, total alkalinity, calorific value, pH, chemical oxygen demand and ammonium nitrogen (NH4-N). The biogas composition was analysed using a gas analyser. We found that donkey dung produced biogas with an average methane yield of 55% without co-digesting it with other wastes. The results show that donkey dung is an effective substrate for biogas production.

2016 ◽  
Vol 75 (4) ◽  
pp. 775-781 ◽  
Author(s):  
J. A. Barrios ◽  
U. Duran ◽  
A. Cano ◽  
M. Cisneros-Ortiz ◽  
S. Hernández

Anaerobic digestion of wastewater sludge is the preferred method for sludge treatment as it produces energy in the form of biogas as well as a stabilised product that may be land applied. Different pre-treatments have been proposed to solubilise organic matter and increase biogas production. Sludge electrooxidation with boron-doped diamond electrodes was used as pre-treatment for waste activated sludge (WAS) and its effect on physicochemical properties and biomethane potential (BMP) was evaluated. WAS with 2 and 3% total solids (TS) achieved 2.1 and 2.8% solubilisation, respectively, with higher solids requiring more energy. After pre-treatment, biodegradable chemical oxygen demand values were close to the maximum theoretical BMP, which makes sludge suitable for energy production. Anaerobic digestion reduced volatile solids (VS) by more than 30% in pre-treated sludge with a food to microorganism ratio of 0.15 g VSfed g−1 VSbiomass. Volatile fatty acids were lower than those for sludge without pre-treatment. Best pre-treatment conditions were 3% TS and 28.6 mA cm−2.


2013 ◽  
Vol 3 (4) ◽  
pp. 381-391 ◽  
Author(s):  
Youssef Abarghaz ◽  
Khiyati Mohammed El Ghali ◽  
Mustapha Mahi ◽  
Christine Werner ◽  
Najib Bendaou ◽  
...  

An anaerobic digestion pilot system was implemented in June 2010 in the Moroccan village of Dayet Ifrah. The input material consists of toilet wastewater and cattle manure. Biogas is produced under anaerobic conditions. It is used for heating and cooking. This biogas system could be an useful sanitation technology due to its ability to treat wastewater. The biogas system was monitored over 86 days in summer 2012 to measure gas production. The average gas production recorded was about 1,870 l per day. This amount is sufficient for a farming family composed of 17 people. Our work seeks to find the most appropriate formula to predict biogas production under Moroccan conditions. We compared and ranked different formulas by applying principal component analysis and the ELECTRE III method. The variables studied were the chemical oxygen demand reduction and biogas volume measurements. The results show that the formula of Vedrenne is the most appropriate equation to predict biogas production in Moroccan rural areas (see Vedrenne (2007) ‘Study of Anaerobic Degradation Processes and Methane Production During Storage of Manure’. Environmental Science Thesis. ENSA, Rennes).


2018 ◽  
Vol 78 (1) ◽  
pp. 92-102 ◽  
Author(s):  
K. Panyaping ◽  
R. Khiewwijit ◽  
P. Wongpankamol

Abstract Biogas yield obtained from anaerobic digestion of swine wastewater (SWW) needs to be increased to produce electrical energy. To enhance biogas and prevent pollution, use of mixed culture microalgae grown in wastewater (MWW) with SWW has attracted a lot of interest. This research was focused on the possibility of utilizing MWW. Six experiments using raw SWW and MWW, and their co-digestion were conducted on a laboratory scale in one-litre reactors with the ratio of inoculum and substrate of 70:30 under without and with alkaline pretreatment (using 3% NaOH for pH adjustment every 15 min at pH 11 for 3 h). The results showed that co-digestion had the major effect on increasing biogas and methane yields (0.735 and 0.326 m3/kg of volatile solids (VS) removed), and the highest chemical oxygen demand and VS removal (60.29% and 63.17%). For pretreatment, the effect of ammonia inhibition at a high pH of 11 had more influence on biodegradation than the effect of destruction of MWW's cell walls, resulting in a low biogas production of pretreated MWW and pretreated co-digestion. These findings affirm the potential of co-digestion, and the possibility of using both single and co-substrate MWW. Pretreatment could be improved at a lower alkaline pH condition. A pilot scale of co-digestion should be performed.


2016 ◽  
Vol 37 (4) ◽  
pp. 1827 ◽  
Author(s):  
Paulo André Cremonez ◽  
Armin Feiden ◽  
Joel Gustavo Teleken ◽  
Samuel Nelson Melegari de Souza ◽  
Michael Feroldi ◽  
...  

In this study, we compared cassava starch-based biodegradable polymers (PBMs) and glycerol (G) as additives used to increase biogas production from the co-digestion of swine wastewater (ARS). We chose to work with an inoculum comprising 40% (v/v) of the total volume of the reactor; this inoculum was obtained from a Canadian model digester for treating swine waste. In the anaerobic digestion process, batch reactors were used on a laboratory scale with a total volume of approximately 4 L and a working volume of 3.2 L. Three treatments were conducted to compare the efficiency of solid removal, the chemical oxygen demand (COD), and the production of biogas. The first treatment contained only swine waste; the second included the addition of glycerol at 1, 3, and 5% (w/v); and the third treatment included the addition of 1, 3, and 5% (w/v) of PBM residue in relation to the swine wastewater. From the results, it can be concluded that higher yields were obtained for the treatment with 3% PBM and 1% glycerol. Most treatments showed high removal rates of total solids and total volatile solids. Reductions lower than 70% were obtained only for treatments with PBM and glycerol at a ratio of 5%.


Author(s):  
Juliana M. Matter ◽  
Mônica S. S. de M. Costa ◽  
Luiz A. de M. Costa ◽  
Dercio C. Pereira ◽  
Amarílis de Varennes ◽  
...  

ABSTRACT Aiming to evaluate different wastewaters in the anaerobic co-digestion (ACoD) of hatchery wastes, a batch test was conducted in bench horizontal digesters. At the end of the process, the potential production of biogas and methane was calculated as well as the chemical composition (macro- and micronutrients) of the effluent and the concentrations of methane and carbon dioxide gas at 60 days. The monitoring of the process included observations of the reduction of the organic carbon, chemical oxygen demand, and total (TS) and volatile solids (VS), as well as the variation of pH and electrical conductivity (EC). The results showed that the mixing between the hatchery fresh waste and swine wastewater (T4) and among fresh hatchery waste, water from the first anaerobic pond of the hatchery and swine wastewater (T5) represent significant sources of renewable energy and thereby greater potential for biogas production (192.50 and 205.0 L biogas per kg of VS added to T4 and T5, respectively). The average concentration of methane in the biogas varied from 72 to 77% among the treatments. For all treatments, reductions were observed in TS and VS and increases in pH and EC. It was concluded that the energy recovery from hatchery wastes is favoured by the addition of swine wastewater in the ACoD process.


2013 ◽  
Vol 856 ◽  
pp. 327-332 ◽  
Author(s):  
Apiwaj Janejadkarn ◽  
Orathai Chavalparit

The objective of this research was to evaluate the quantity of biogas production from napier grass (Pak Chong 1) (Pennisetum purpureum × Pennisetum americanum) in three identical continuously stirred tank reactor (CSTRs) at room temperature. The volatile solids feed was varied at 1.5, 2 and 3%, respectively. The organic loading rate was altered at 0.43, 0.57 and 0.86 kg VS/m3.d in CSTR 1, 2 and 3, respectively. Three laboratory scale CSTRs with working volume of 5 l were carried out. The results showed that the optimum volatile solids fraction was 2% VS with maximum biogas production of 0.529 m3/kg VS added. The methane production was achieved at 0.242 m3/kg VS added. Under this condition, the soluble chemical oxygen demand (SCOD) of the hydrolysate was increased by 74% and the SCOD and VS removal efficiency were obtained 52.52% and 55.98%, respectively. The highest total volatile fatty acid was obtained on day 12, which was 5.51 g/l and the highest concentration of HAc was 4.33 g/l. The results indicated that volatile solids fraction was 2% VS achieves a maximum biogas yield and can be successfully converted using anaerobic digestion and was investigated into economical and scalable.


2015 ◽  
Vol 75 (4 suppl 2) ◽  
pp. 158-164 ◽  
Author(s):  
F. H. Passig ◽  
S. B. Lima ◽  
K. Q. Carvalho ◽  
M. C. R. Halmeman ◽  
P. C. Souza ◽  
...  

The Mourão River basin is located on the central western region of the Paraná State – Brazil, between coordinates 23º 44’ - 24º 25 South latitude and 52º 12’ - 52º 30’ West longitude, between 270 and 820 m above sea level, and 1,648.21 km2 drainage area. Water quality was evaluated by monitoring physical, chemical and microbiological parameters. Monthly samplings were performed for a year at five sites in the basin for analysis of: pH, temperature, dissolved oxygen, biochemical oxygen demand, total nitrogen, ammoniacal nitrogen, nitrite, nitrate, total phosphorus, turbidity, total solids, volatile solids and fecal coliforms. The results of the evaluated parameters showed higher values than the limits set by CONAMA Resolution 357 from 2005 for Class 2 in some samples. The Water Quality Index (WQI) indicated that 72% of samples had average quality and 28% had good quality for the Mourão River basin. Higher values of WQI were observed after rainfall period with median of 75 compared to the dry period with median of 62. The source of the Mourão River is contaminated with fecal coliforms, evidencing the real need to treat sewage in rural areas.


Recycling ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 21 ◽  
Author(s):  
Ammar Alkhalidi ◽  
Mohamad K. Khawaja ◽  
Khaled A. Amer ◽  
Audai S. Nawafleh ◽  
Mohammad A. Al-Safadi

Essential energy needs are not always met in poor and rural areas of developing counties; therefore, natural energy sources are necessary to mitigate this problem. Rural areas inhabitants utilize methane as a replacement for cooking gas to reduce their gas bill. Methane gas can be produced from a biogas digester; however, operating a large digester in a densely populated village in Jordan can be challenging due to inefficient village waste management systems. On the other hand, using a small-scale portable biogas digester to generate biogas could overcome these problems. In this work, three biogas digester feedstocks for a small portable biogas digester from natural sources available in Jordanian villages such as human and animal waste were designed and evaluated. The three feedstocks are food waste, human waste, and a mixture of human and food waste. The parameters tested were the digester size and the biogas production. The results showed that the best digester for portable application was that which digested a mixture of human and food waste; for a five-member family, this type of digester provided 115% of the family’s cooking gas requirements with a digester volume of 0.54 m3. This design, while applicable for a typical rural Jordanian family, can also be utilized globally.


2020 ◽  
pp. 0734242X2095739
Author(s):  
Abdul-Aziz Issah ◽  
Telesphore Kabera

The study assessed the impact of volatile fatty acids (VFA) to total alkalinity (TA) ratio (VFA/TA), and percentage volatile solids (VS) reduction of batch and semi-continuous anaerobic co-digestion of palm nut paste waste (PNPW) and anaerobic-digested rumen waste (ADRW) on digester stability and biogas production under the environmental condition of 50 ± 1°C and hydraulic retention time of 21 days for the batch studies and 14 days for semi-continuous co-digestion. The co-digestion ratios were based on percentage digester volume corresponding to 90%:10%, 75%:25% and 50%:50%. During batch and semi-continuous anaerobic co-digestion, VFA/TA of 0.32–1.0 and VS reduction of 53–67% were observed as the stable range at which biogas production was maximum. In terms of semi-continuous anaerobic digestion (AD), except for the 50%:50% ratio where biogas production progressed steadily from the first to fourteenth days, biogas production initially dropped from 180.1 to 171.3 mL between the first and third days of the 90%:10% reaching a maximum of 184 mL on the fourteenth day. Biogas production declined from 198.8 to 187.5 mL on the second day and then increased to 198.8 ± 0.5 mL in the case of the 75%:25% with a significant difference between the treatment ratios at p < 0.05. Therefore, the study can confirm that the 50%:50% ratio (PNPW:ADRW) is a suitable option for managing crude fat-based waste under thermophilic AD due to its potential for rapid start-up and complete biodegradation of active biomass within a 21-day period. This presupposes that residual methane as greenhouse gas will be void in the effluent if disposed of.


1997 ◽  
Vol 36 (11) ◽  
pp. 121-128 ◽  
Author(s):  
A. Tiehm ◽  
K. Nickel ◽  
U. Neis

The slow degradation rate of sewage sludge in anaerobic digesters is due to the rate limiting step of sludge hydrolysis. The effect of ultrasound pretreatment on sludge degradability was investigated using ultrasound at a frequency of 31 kHz and high acoustic intensities. Ultrasound treatment resulted in raw sludge disintegration as was demonstrated by increase of Chemical Oxygen Demand in the sludge supernatant and size reduction of sludge solids. Semi-continuous fermentation experiments with disintegrated and untreated sludge were done for four months on a half-technical scale. One fermenter was operated as a control with a conventional residence time of 22 days. Four fermenters were operated with disintegrated sludge and residence times of 22, 16, 12, and 8 days, respectively. In the fermenters operated with identical residence times of 22 days reduction of volatile solids was 45.8% for untreated sludge and 50.3% for disintegrated sludge. The fermentation of disintegrated sludge was stable even at the shortest residence time of 8 days with biogas production 2.2 times that of the control fermenter. Due to ultrasound disintegration a better degradability of raw sludge was achieved that permitted a substantial increase in throughput.


Sign in / Sign up

Export Citation Format

Share Document