scholarly journals Anaerobic co-digestion of hatchery waste and wastewater to produce energy and biofertilizer - Batch phase

Author(s):  
Juliana M. Matter ◽  
Mônica S. S. de M. Costa ◽  
Luiz A. de M. Costa ◽  
Dercio C. Pereira ◽  
Amarílis de Varennes ◽  
...  

ABSTRACT Aiming to evaluate different wastewaters in the anaerobic co-digestion (ACoD) of hatchery wastes, a batch test was conducted in bench horizontal digesters. At the end of the process, the potential production of biogas and methane was calculated as well as the chemical composition (macro- and micronutrients) of the effluent and the concentrations of methane and carbon dioxide gas at 60 days. The monitoring of the process included observations of the reduction of the organic carbon, chemical oxygen demand, and total (TS) and volatile solids (VS), as well as the variation of pH and electrical conductivity (EC). The results showed that the mixing between the hatchery fresh waste and swine wastewater (T4) and among fresh hatchery waste, water from the first anaerobic pond of the hatchery and swine wastewater (T5) represent significant sources of renewable energy and thereby greater potential for biogas production (192.50 and 205.0 L biogas per kg of VS added to T4 and T5, respectively). The average concentration of methane in the biogas varied from 72 to 77% among the treatments. For all treatments, reductions were observed in TS and VS and increases in pH and EC. It was concluded that the energy recovery from hatchery wastes is favoured by the addition of swine wastewater in the ACoD process.

2018 ◽  
Vol 78 (1) ◽  
pp. 92-102 ◽  
Author(s):  
K. Panyaping ◽  
R. Khiewwijit ◽  
P. Wongpankamol

Abstract Biogas yield obtained from anaerobic digestion of swine wastewater (SWW) needs to be increased to produce electrical energy. To enhance biogas and prevent pollution, use of mixed culture microalgae grown in wastewater (MWW) with SWW has attracted a lot of interest. This research was focused on the possibility of utilizing MWW. Six experiments using raw SWW and MWW, and their co-digestion were conducted on a laboratory scale in one-litre reactors with the ratio of inoculum and substrate of 70:30 under without and with alkaline pretreatment (using 3% NaOH for pH adjustment every 15 min at pH 11 for 3 h). The results showed that co-digestion had the major effect on increasing biogas and methane yields (0.735 and 0.326 m3/kg of volatile solids (VS) removed), and the highest chemical oxygen demand and VS removal (60.29% and 63.17%). For pretreatment, the effect of ammonia inhibition at a high pH of 11 had more influence on biodegradation than the effect of destruction of MWW's cell walls, resulting in a low biogas production of pretreated MWW and pretreated co-digestion. These findings affirm the potential of co-digestion, and the possibility of using both single and co-substrate MWW. Pretreatment could be improved at a lower alkaline pH condition. A pilot scale of co-digestion should be performed.


2016 ◽  
Vol 37 (4) ◽  
pp. 1827 ◽  
Author(s):  
Paulo André Cremonez ◽  
Armin Feiden ◽  
Joel Gustavo Teleken ◽  
Samuel Nelson Melegari de Souza ◽  
Michael Feroldi ◽  
...  

In this study, we compared cassava starch-based biodegradable polymers (PBMs) and glycerol (G) as additives used to increase biogas production from the co-digestion of swine wastewater (ARS). We chose to work with an inoculum comprising 40% (v/v) of the total volume of the reactor; this inoculum was obtained from a Canadian model digester for treating swine waste. In the anaerobic digestion process, batch reactors were used on a laboratory scale with a total volume of approximately 4 L and a working volume of 3.2 L. Three treatments were conducted to compare the efficiency of solid removal, the chemical oxygen demand (COD), and the production of biogas. The first treatment contained only swine waste; the second included the addition of glycerol at 1, 3, and 5% (w/v); and the third treatment included the addition of 1, 3, and 5% (w/v) of PBM residue in relation to the swine wastewater. From the results, it can be concluded that higher yields were obtained for the treatment with 3% PBM and 1% glycerol. Most treatments showed high removal rates of total solids and total volatile solids. Reductions lower than 70% were obtained only for treatments with PBM and glycerol at a ratio of 5%.


2013 ◽  
Vol 3 (4) ◽  
pp. 572-581 ◽  
Author(s):  
T. Garoma ◽  
C. Williams

The potential for using an enhanced anaerobic digestion (AD) process as a sanitation and energy recovery technology for communities that lack access to basic sanitation was evaluated. For the enhanced AD system to generate a reliable supply of biogas, so that it can be adopted and self-sustained by the community, the use of algal biomass as a supplementary feedstock was evaluated. In addition, the effects of operational parameters on waste mineralization and biogas production were investigated. The results show that the system has the potential to be developed into an effective waste treatment technology, and it has produced high biogas yields and digested waste low in fecal bacteria and high in nutrients. Reductions of 42 to 51% in volatile solids and 29 to 45% in chemical oxygen demand were achieved at 35 °C. On average, total coliform and fecal coliform concentrations of 7.6 × 105 and 1.4 × 104 CFU per gram of total solids, respectively, were measured in the digested waste. The total nitrogen and phosphorus content of the residual was determined to be in the range of 9–17% as N and 3–7% as P (7–16% as P2O5). The biogas yields varied in the range of 0.47–0.57 mL per mg of volatile solids digested.


2016 ◽  
Vol 75 (4) ◽  
pp. 775-781 ◽  
Author(s):  
J. A. Barrios ◽  
U. Duran ◽  
A. Cano ◽  
M. Cisneros-Ortiz ◽  
S. Hernández

Anaerobic digestion of wastewater sludge is the preferred method for sludge treatment as it produces energy in the form of biogas as well as a stabilised product that may be land applied. Different pre-treatments have been proposed to solubilise organic matter and increase biogas production. Sludge electrooxidation with boron-doped diamond electrodes was used as pre-treatment for waste activated sludge (WAS) and its effect on physicochemical properties and biomethane potential (BMP) was evaluated. WAS with 2 and 3% total solids (TS) achieved 2.1 and 2.8% solubilisation, respectively, with higher solids requiring more energy. After pre-treatment, biodegradable chemical oxygen demand values were close to the maximum theoretical BMP, which makes sludge suitable for energy production. Anaerobic digestion reduced volatile solids (VS) by more than 30% in pre-treated sludge with a food to microorganism ratio of 0.15 g VSfed g−1 VSbiomass. Volatile fatty acids were lower than those for sludge without pre-treatment. Best pre-treatment conditions were 3% TS and 28.6 mA cm−2.


2016 ◽  
Vol Volume 112 (Number 7/8) ◽  
Author(s):  
Patrick Mukumba ◽  
Golden Makaka ◽  
Sampson Mamphweli ◽  
◽  
◽  
...  

Abstract Biogas can provide a solution to some of South Africa’s energy needs, especially in rural areas of Eastern Cape Province that have plentiful biogas substrates from donkeys, goats, sheep, cattle and chicken. We investigated the effectiveness of donkey dung for biogas production using a designed and constructed cylindrical field batch biogas digester. The donkey dung was collected from the University of Fort Hare’s Honeydale Farm and was analysed for total solids, volatile solids, total alkalinity, calorific value, pH, chemical oxygen demand and ammonium nitrogen (NH4-N). The biogas composition was analysed using a gas analyser. We found that donkey dung produced biogas with an average methane yield of 55% without co-digesting it with other wastes. The results show that donkey dung is an effective substrate for biogas production.


2015 ◽  
Vol 73 (3) ◽  
pp. 597-606 ◽  
Author(s):  
Nguyen Thi Tuyet ◽  
Nguyen Phuoc Dan ◽  
Nguyen Cong Vu ◽  
Nguyen Le Hoang Trung ◽  
Bui Xuan Thanh ◽  
...  

This study assessed an alternative concept for co-treatment of sewage and organic kitchen waste in Vietnam. The goal was to apply direct membrane filtration for sewage treatment to generate a permeate that is suitable for discharge. The obtained chemical oxygen demand (COD) concentrations in the permeate of ultrafiltration tests were indeed under the limit value (50 mg/L) of the local municipal discharge standards. The COD of the concentrate was 5.4 times higher than that of the initial feed. These concentrated organics were then co-digested with organic kitchen wastes at an organic loading rate of 2.0 kg VS/m3.d. The volumetric biogas production of the digester was 1.94 ± 0.34 m3/m3.d. The recovered carbon, in terms of methane gas, accounted for 50% of the total carbon input of the integrated system. Consequently, an electrical production of 64 Wh/capita/d can be obtained when applying the proposed technology with the current wastes generated in Ho Chi Minh City. Thus, it is an approach with great potential in terms of energy recovery and waste treatment.


2013 ◽  
Vol 856 ◽  
pp. 327-332 ◽  
Author(s):  
Apiwaj Janejadkarn ◽  
Orathai Chavalparit

The objective of this research was to evaluate the quantity of biogas production from napier grass (Pak Chong 1) (Pennisetum purpureum × Pennisetum americanum) in three identical continuously stirred tank reactor (CSTRs) at room temperature. The volatile solids feed was varied at 1.5, 2 and 3%, respectively. The organic loading rate was altered at 0.43, 0.57 and 0.86 kg VS/m3.d in CSTR 1, 2 and 3, respectively. Three laboratory scale CSTRs with working volume of 5 l were carried out. The results showed that the optimum volatile solids fraction was 2% VS with maximum biogas production of 0.529 m3/kg VS added. The methane production was achieved at 0.242 m3/kg VS added. Under this condition, the soluble chemical oxygen demand (SCOD) of the hydrolysate was increased by 74% and the SCOD and VS removal efficiency were obtained 52.52% and 55.98%, respectively. The highest total volatile fatty acid was obtained on day 12, which was 5.51 g/l and the highest concentration of HAc was 4.33 g/l. The results indicated that volatile solids fraction was 2% VS achieves a maximum biogas yield and can be successfully converted using anaerobic digestion and was investigated into economical and scalable.


2013 ◽  
Vol 33 (6) ◽  
pp. 1090-1098 ◽  
Author(s):  
Mônica S. S. de M. Costa ◽  
Luiz A. de M. Costa ◽  
Jorge de Lucas Junior ◽  
Laércio A. Pivetta

Physical and chemical characteristics of manure are modified by different animal production systems. In cattle feeding system for young bulls there is an inversion of the proportion between forage and concentrate. In other words, the animals receive a smaller amount of forage compared to the traditional system. These changes in the manure characteristics involve changes in the treatment systems. The aim of this study was to determine the potential production of biogas of batch digesters fed with manure from young bulls that received two diets containing different proportions between forage and concentrate, with or without inoculums and submitted to three levels of temperature (25, 35 and 40(0)C). The evaluated parameters were total solids (TS) and volatile solids (VS) reduction and biogas potentials production. The digesters fed with manure from animals that received the diet 2 (80%C + 20% R) showed the largest reductions of TS and VS. About the potentials of biogas production there was interaction between the factors diet and inoculums, but no effects of temperatures. The treatment content manure from animals fed with diet 2 without inoculums presented the greatest potential of biogas production per kg of TS added (0.2123 m³).


1997 ◽  
Vol 36 (11) ◽  
pp. 121-128 ◽  
Author(s):  
A. Tiehm ◽  
K. Nickel ◽  
U. Neis

The slow degradation rate of sewage sludge in anaerobic digesters is due to the rate limiting step of sludge hydrolysis. The effect of ultrasound pretreatment on sludge degradability was investigated using ultrasound at a frequency of 31 kHz and high acoustic intensities. Ultrasound treatment resulted in raw sludge disintegration as was demonstrated by increase of Chemical Oxygen Demand in the sludge supernatant and size reduction of sludge solids. Semi-continuous fermentation experiments with disintegrated and untreated sludge were done for four months on a half-technical scale. One fermenter was operated as a control with a conventional residence time of 22 days. Four fermenters were operated with disintegrated sludge and residence times of 22, 16, 12, and 8 days, respectively. In the fermenters operated with identical residence times of 22 days reduction of volatile solids was 45.8% for untreated sludge and 50.3% for disintegrated sludge. The fermentation of disintegrated sludge was stable even at the shortest residence time of 8 days with biogas production 2.2 times that of the control fermenter. Due to ultrasound disintegration a better degradability of raw sludge was achieved that permitted a substantial increase in throughput.


2017 ◽  
Vol 25 (6) ◽  
pp. 491-499
Author(s):  
Cecília De Fátima Souza Ferreira ◽  
Richard Stephen Gates ◽  
Maurílio Duarte Batista ◽  
Ilda De Fatima Ferreira TINOCO

Soil micro-organisms called Effective Microorganisms (EM) were first cultivated and used in the 1970s. Researches about these cultures have since then demonstrated their effectiveness in improving soil characteristics and as an alternative for accelerating organic matter decomposition in waste treatment systems. The objective of this study was to test whether the addition of EM to substrates incubated in anaerobic digesters would increase the efficiency of waste treatment and biogas production. EM cultures were obtained from bacterial colonies captured within the A-horizon of a Brazilian forest soil. They were left to grow during 15 days on cooked rice contact with the soil; afterwards, the established colonies were separated according to their colors, discarding all shades of black, gray and white, according to recommendations from related literature. Remaining colonies were further grown in sugarcane broth medium for 18 days, being this the final EM culture. Twelve bench digesters were used, each with a total capacity for three liters. The experiment was composed by four treatments consisting of different concentrations of EM inoculum [15% (T1), 10% (T2), 1% (T3) and 0% (T4)] applied to dairy cattle manure, with three replications per treatment. Anaerobic digestion was carried out under controlled temperature (35oC) over 99 days. Data collected included concentrations of total, fixed and volatile solids (TS, FS and VS), pH and Chemical Oxygen Demand (COD). The pH of the EM inoculum was 3.34 and COD was 24.25 mg L-1. The best reduction efficiencies for COD and TS removal were 79.44% and 42.50%, respectively, in T4. Among the treatments with EM addition, 1% (T3) resulted in better COD reduction. The maximum accumulated biogas production was 20.60 L biogas L substrate-1, also for T3. In conclusion, EM as an inoculum in low concentrations may be advantageous to anaerobic digestion.


Sign in / Sign up

Export Citation Format

Share Document