scholarly journals Geophysical prospection on the Pâture du Couvent (Bibracte, France). The campaign of 2014

2015 ◽  
pp. 423-429
Author(s):  
Lőrinc Timár ◽  
Zoltán Czajlik ◽  
András Bödőcs ◽  
Sándor Puszta

This article investigates the usability of ground-penetrating radar and provides a report on the geophysical survey in the zone of the Pature du Couvent on the Mont Beuvray. In 2014 a large area was explored and this paper presents how the results could be related to the excavated archaeological structures.

2019 ◽  
Vol 38 (6) ◽  
pp. 442-446
Author(s):  
Harald von der Osten-Woldenburg

A geophysical survey on the site of the former Cistercian abbey in Tennenbach, a subarea of the German town of Emmendingen, became necessary due to planned roadwork. While information is readily available on the abbey's demesne and wealth, prior to this geophysical prospection, there has been almost no indication of the extent and layout of the medieval buildings of the abbey, which was founded in the 12th century. Geomagnetic mapping enabled us to narrow down the area of the actual abbey itself and record the position of individual structures. These measurements were disrupted by a number of intense anomalies that could be traced back to several modern supply lines, so the 5-hectare site was resurveyed once more using ground-penetrating radar (GPR). The GPR method enabled the production of a detailed layout plan of the abbey. Besides identifying column bases of the abbey's church, it was also possible to record individual rooms of the outbuildings and two cloisters and to recognize the foundations of buildings from the earliest phases, which lie even deeper in the ground.


2021 ◽  
Vol 13 (12) ◽  
pp. 2384
Author(s):  
Roland Filzwieser ◽  
Vujadin Ivanišević ◽  
Geert J. Verhoeven ◽  
Christian Gugl ◽  
Klaus Löcker ◽  
...  

Large parts of the urban layout of the abandoned Roman town of Bassianae (in present-day Serbia) are still discernible on the surface today due to the deliberate and targeted quarrying of the Roman foundations. In 2014, all of the town's intramural (and some extramural) areas were surveyed using aerial photography, ground-penetrating radar, and magnetometry to analyze the site's topography and to map remaining buried structures. The surveys showed a strong agreement between the digital surface model derived from the aerial photographs and the geophysical prospection data. However, many structures could only be detected by one method, underlining the benefits of a complementary archaeological prospection approach using multiple methods. This article presents the results of the extensive surveys and their comprehensive integrative interpretation, discussing Bassianae's ground plan and urban infrastructure. Starting with an overview of this Roman town's research history, we present the details of the triple prospection approach, followed by the processing, integrative analysis, and interpretation of the acquired data sets. Finally, this newly gained information is contrasted with a plan of Roman Bassianae compiled in 1935.


2002 ◽  
Vol 26 (2) ◽  
pp. 373-380 ◽  
Author(s):  
J. M. Ucha ◽  
M. Botelho ◽  
G. S. Vilas Boas ◽  
L. P. Ribeiro ◽  
P. S. Santana

Foram estudados nove perfis ao longo de uma toposseqüência sobre os sedimentos do Grupo Barreiras, na Fazenda Rio Negro, município de Entre Rios (BA), utilizando a prospecção eletromagnética por meio do Radar Penetrante no Solo - "Ground-penetrating radar - GPR", objetivando analisar a utilização dessa ferramenta na aquisição de informações sobre as feições que ocorrem no solo, mediante a comparação entre os radargramas obtidos e a descrição pedológica. O equipamento utilizado foi um Geophysical Survey System modelo GPR SR system-2, com antena de 80 MHz. A análise radargramétrica confirmou o aparecimento dos fragipãs e duripãs em profundidade, que ocorrem sempre acompanhados de um processo de transformação dos solos do tipo Latossolo Amarelo e Argissolo Amarelo em Espodossolo. Os padrões de reflexão mostram claramente os domínios dos solos argilosos e dos solos arenosos, com e sem a presença dos horizontes endurecidos.


2018 ◽  
Vol 25 (3) ◽  
pp. 171-195 ◽  
Author(s):  
Immo Trinks ◽  
Alois Hinterleitner ◽  
Wolfgang Neubauer ◽  
Erich Nau ◽  
Klaus Löcker ◽  
...  

Geophysics ◽  
2021 ◽  
pp. 1-74
Author(s):  
Lilong Zou ◽  
Kazutaka Kikuta ◽  
Amir M. Alani ◽  
Motoyuki Sato

The multi-layer nature of airport pavement structures is susceptible to the generation of voids at the bonding parts of the structure, which is also called interlayer debonding. Observations have shown that the thickness of the resulting voids is usually at the scale of millimeters, which makes it difficult to inspect. The efficient and accurate characteristics of ground penetrating radar (GPR) make it suitable for large area inspections of airport pavement. In this study, a multi-static GPR system was used to inspect the interlayer debonding of a large area of an airport pavement. A special antenna arrangement can obtain common mid-point (CMP) gathers during a common offset survey. The presence of interlayer debonding affects the phase of the reflection signals, and the phase disturbance can be quantified by wavelet transform. Therefore, an advanced approach that uses the average entropy of the wavelet transform parameters in CMP gathers to detect the interlayer debonding of airport pavement is proposed. The results demonstrate that the regions with high entropy correspond to the regions where tiny voids exist. The new approach introduced in this study was then evaluated by a field-base experiment at an airport taxiway model. The results show that the proposed approach can detect interlayer debonding of the pavement model accurately and efficiently. The on-site coring results confirm the performance of the proposed approach.


Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. H39-H49
Author(s):  
Federico Di Paolo ◽  
Barbara Cosciotti ◽  
Sebastian E. Lauro ◽  
Elisabetta Mattei ◽  
Elena Pettinelli

The use of the ground-penetrating-radar (GPR) technique to estimate snow parameters such as thickness, density, and snow water equivalent (SWE) is particularly promising because it allows for surveying a large area in a relatively short amount of time. However, this application requires an accurate evaluation of the physical parameters retrieved from the radar measurements, which requires estimating each quantity involved in the computation along with its associated uncertainty. Conversely, the uncertainties are rarely reported in GPR snow studies, even if they represent essential information for data comparisons with other techniques such as the snow rod or snow pit methods. Snow parameters can be estimated from radar data as follows: The snow thickness can be computed from two-way traveltime if the snow average wave velocity is known; the snow density can be estimated from wave velocity using an appropriate mixing formula, and SWE can be computed once these two parameters have been calculated. Starting from published data, we have estimated the accuracy achievable by computing the overall uncertainty for each GPR-retrieved snow parameter and evaluated the influence of the different sources of uncertainties. The computation was made for three antenna frequencies (250, 500, and 1000 MHz) and various snow depths (0–5 m). We find that for snow thicknesses of less than 3 m, the main contribution to the uncertainties associated with snow parameters is given by the uncertainty on two-way traveltime estimation, especially for low antenna frequencies. However, for thicker snow depths, other factors such as the uncertainty on the antenna separation affect the overall accuracy and cannot be neglected. Our studies highlight the importance of the uncertaintiy assessment and suggest a rigorous way for their computation in the field of quantitative geophysics.


2014 ◽  
Vol 25 (3) ◽  
pp. 239-255 ◽  
Author(s):  
Jean-François Millaire ◽  
Edward Eastaugh

Recent geophysical survey at the early urban center of the Gallinazo Group in the Virú Valley highlights the potential for a multifaceted approach to remote sensing on the desert coast of South America and underscores the value of these well-established techniques for the rapid and detailed mapping of complex urban architecture. The Gallinazo Group (100 B.C.-A.D. 700) was an early city home to a population of between 10,000 and 14,400 people living in a network of agglutinated houses, plazas, public buildings, and alleyways. In 2008, detailed analysis of the site was undertaken, integrating traditional excavation techniques, soil coring, magnetometry, and ground-penetrating radar to gain a better understanding of the urban morphology of the site. The results of this fieldwork were extremely successful, with large areas of the urban layout being mapped in great detail. This article presents results from our survey, highlighting the potentials and limitations of each technique.


2013 ◽  
Vol 17 (2) ◽  
pp. 519-531 ◽  
Author(s):  
J. Igel ◽  
T. Günther ◽  
M. Kuntzer

Abstract. Freshwater lenses, as important resource for drinking water, are sensitive to climate changes and sea level rise. To simulate this impact on the groundwater systems, hydraulic subsurface models have to be designed. Geophysical techniques can provide information for generating realistic models. The aim of our work is to show how ground-penetrating radar (GPR) investigations can contribute to such hydrological simulations. In the pilot area, Borkum island, GPR was used to map the shape of the groundwater table (GWT) and to characterise the aquifer. In total, 20 km of constant offset (CO) profiles were measured with centre frequencies of 80 and 200 MHz. Wave velocities were determined by common midpoint (CMP) measurements and vertical radar profiling (VRP) in a monitoring well. The 80 MHz CO data show a clear reflection at the groundwater table, whereas the reflection is weaker for the 200 MHz data. After correcting the GPR water tables for the capillary rise, they are in good accordance with the pressure heads of the observation wells in the area. In the centre of the island, the groundwater table is found up to 3.5 m above sea level, however it is lower towards the coastline and marshland. Some local depressions are observed in the region of dune valleys and around pumping stations of the local water supplier. GPR also reveals details within the sediments and highly-permeable aeolian sands can be distinguished from less-permeable marine sediments. Further, a silt loam layer below the water table could be mapped on a large area. The reflection characteristics indicates scattered erosion channels in this layer that cause it to be an aquitard with some leakage. GPR provides a high resolution map of the groundwater table and insight into the stratigraphy of the sediments and their hydraulic properties. This is valuable complementary information to the observation of sparsely distributed monitoring wells as input to hydraulic simulation.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2938
Author(s):  
Neil Linford ◽  
Russell MacKechnie-Guire ◽  
May Cassar

The aim of this trial project was to identify whether buried archaeological remains may have an influence on equine locomotion, through comparison with a non-invasive Ground Penetrating Radar (GPR) survey. This study was conducted at the world-renowned Burghley Horse Trials site, near Stamford, City of Peterborough, U.K. that has a diverse range of heritage assets throughout the wider park land centred on the Grade 1 listed Elizabethan Burghley House. The initial aim of the research was to first use geophysical survey to identify and characterise archaeological remains, and then to determine a suitable location to conduct an equine locomotion study. This trial was conducted with five event type horses with their gaits recorded through the use of three axis, wireless, Inertial Measurement Units, and high speed video capture. It was hoped that this study might indicate an association between the presence of well preserved archaeological remains and changes in the gait of the horses, similar to those shown by studies of dressage horses over different riding surfaces. The results from the equine locomotion study did demonstrate a correlation between the presence of surviving archaeological remains and the alteration in the horses’ gait and, although this is only a preliminary study, the results may well be of interest during the design and construction of equine event facilities. Geophysical survey could, for example, be considered during the design of new or alteration to existing equine courses to allow some mitigation in the location of the course with respect to any archaeological remains, or through the appropriate use of a protective artificial surface.


2015 ◽  
Vol 19 ◽  
pp. 233-253
Author(s):  
Tomasz Kalicki ◽  
Joanna Krupa ◽  
Sławomir Chwałek

The geoarchaeological research conducted consisted of a geomorphological prospecting of the Paphos region and a geophysical examination of the ancient town of Nea Paphos and its agora. In addition, the morphogenetic processes that shaped the coastal plains of the Cypriot area were also determined and a research hypothesis that could explain the shrinking of the bay and the decline of the harbour north of the cape of Paphos was formulated. The Mala GPR (Ground Penetrating Radar) ProEx System, which is compatible with shielded antenna of 500MHz, was used for the geophysical survey of the area. 95 profiles were completed in a northsouth direction (1m apart) and 51 in an eastwest direction (2m apart). One of the main difficulties was to distinguish the stone structures, as the bottoms of their walls were formed at the natural level of the rock and there were pebble layers located above them. Using versatile geophysical techniques, we have attempted to answer a couple of questions: Was the agora area a fully built-up one and what does the continuation of the walls into undiscovered sections of the agora signify?


Sign in / Sign up

Export Citation Format

Share Document