scholarly journals Drought stress tolerance of two wheat genotypes

2008 ◽  
Vol 3 (Special Issue No. 1) ◽  
pp. S95-S104 ◽  
Author(s):  
A. Lukács ◽  
G. Pártay ◽  
T. Németh ◽  
S. Csorba ◽  
C. Farkas

Biotic and abiotic stress effects can limit the productivity of plants to great extent. In Hungary, drought is one of the most important constrains of biomass production, even at the present climatic conditions. The climate change scenarios, developed for the Carpathian basin for the nearest future predict further decrease in surface water resources. Consequently, it is essential to develop drought stress tolerant wheat genotypes to ensure sustainable and productive wheat production under changed climate conditions. The aim of the present study was to compare the stress tolerance of two winter wheat genotypes at two different scales. Soil water regime and development of plants, grown in a pot experiment and in large undisturbed soil columns were evaluated. The pot experiments were carried out in a climatic room in three replicates. GK Élet wheat genotype was planted in six, and Mv Emese in other six pots. Two pots were left without plant for evaporation studies. Based on the mass of the soil columns without plant the evaporation from the bare soil surface was calculated in order to distinguish the evaporation and the transpiration with appropriate precision. A complex stress diagnosis system was developed to monitor the water balance elements. ECH<sub>2</sub>O type capacitive soil moisture probes were installed in each of the pots to perform soil water content measurements four times a day. The irrigation demand was determined according to the hydrolimits, derived from soil hydrophysical properties. In case of both genotypes three plants were provided with the optimum water supply, while the other three ones were drought-stressed. In the undisturbed soil columns, the same wheat genotypes were sawn in one replicate. Similar watering strategy was applied. TDR soil moisture probes were installed in the soil at various depths to monitor changes in soil water content. In order to study the drought stress reaction of the wheat plants, microsensors of 1.6 mm diameter were implanted into the stems and connected to a quadrupole mass spectrometer for gas analysis. The stress status was indicated in the plants grown on partly non-irrigated soil columns by the lower CO<sub>2</sub> level at both genotypes. It was concluded that the developed stress diagnosis system could be used for soil water balance elements calculations. This enables more precise estimation of plant water consumption in order to evaluate the drought sensitivity of different wheat genotypes.

2020 ◽  
Vol 63 (1) ◽  
pp. 141-152
Author(s):  
Jasreman Singh ◽  
Derek M. Heeren ◽  
Daran R. Rudnick ◽  
Wayne E. Woldt ◽  
Geng Bai ◽  
...  

HighlightsCapacitance-based electromagnetic soil moisture sensors were tested in disturbed and undisturbed soils.The uncertainty in estimation of soil water depth was lower using the undisturbed soil sample calibrations.The uncertainty in estimation of soil water depletion was lower than the uncertainty in volumetric water content.Undisturbed calibration of water depletion quantifies water demand with better precision and avoids over-watering.Abstract. The physical properties of soil, such as structure and texture, can affect the performance of an electromagnetic sensor in measuring soil water content. Historically, calibrations have been performed on repacked samples in the laboratory and on soils in the field, but little research has been done on laboratory calibrations with intact (undisturbed) soil cores. In this study, three replications each of disturbed and undisturbed soil samples were collected from two soil texture classes (Yutan silty clay loam and Fillmore silt loam) at a field site in eastern Nebraska to investigate the effects of soil structure and texture on the precision of a METER Group GS-1 capacitance-based sensor calibration. In addition, GS-1 sensors were installed in the field near the soil collection sites at three depths (0.15, 0.46, and 0.76 m). The soil moisture sensor had higher precision in the undisturbed laboratory setup, as the undisturbed calibration had a better correlation [slope closer to one, R2undisturbed (0.89) &gt; R2disturbed (0.73)] than the disturbed calibrations for the Yutan and Fillmore texture classes, and the root mean square difference using the laboratory calibration (RMSDL) was higher for pooled disturbed samples (0.053 m3 m-3) in comparison to pooled undisturbed samples (0.023 m3 m-3). The uncertainty in determination of volumetric water content (?v) was higher using the factory calibration (RMSDF) in comparison to the laboratory calibration (RMSDL) for the different soil structures and texture classes. In general, the uncertainty in estimation of soil water depth was greater than the uncertainty in estimation of soil water depletion by the sensors installed in the field, and the uncertainties in estimation of depth and depletion were lower using the calibration developed from the undisturbed soil samples. The undisturbed calibration of soil water depletion would determine water demand with better precision and potentially avoid over-watering, offering relief from water shortages. Further investigation of sensor calibration techniques is required to enhance the applicability of soil moisture sensors for efficient irrigation management. Keywords: Calibration, Capacitance, Depletion, Irrigation, Precision, Sensor, Soil water content, Structure, Uncertainty.


2020 ◽  
Vol 36 (3) ◽  
pp. 375-386
Author(s):  
Ruixiu Sui ◽  
Earl D. Vories

HighlightsSensor-based irrigation scheduling methods (SBISM) were compared with computerized water balance scheduling.Number and time of irrigation events scheduled using the SBISM were often different from those predicted by the computerized method.The highly variable soils at the Missouri site complicated interpretation of the sensor values.Both SBISM and computerized water balance scheduling could be used for irrigation scheduling with close attention to soil texture and effective rainfall or irrigation.Abstract. Sensor-based irrigation scheduling methods (SBISM) measure soil moisture to allow scheduling of irrigation events based on the soil-water status. With rapid development of soil moisture sensors, more producers have become interested in SBISM, but interpretation of the sensor data is often difficult. Computer-based methods attempt to estimate soil water content and the Arkansas Irrigation Scheduler (AIS) is one example of a weather-based irrigation scheduling tool that has been used in the Mid-South for many years. To aid producers and consultants interested in learning more about irrigation scheduling, field studies were conducted for two years in Mississippi and a year in Missouri to compare SBISM with the AIS. Soil moisture sensors (Decagon GS-1, Acclima TDR-315, Watermark 200SS) were installed in multiple locations of a soybean field (Mississippi) and cotton field (Missouri). Soil water contents of the fields were measured hourly at multiple depths during the growing seasons. The AIS was installed on a computer to estimate soil water content and the required data were obtained from nearby weather stations at both locations and manually entered in the program. In Mississippi, numbers and times of the irrigation events triggered by the SBISM were compared with those that would have been scheduled by the AIS. Results showed the number and time of irrigation events scheduled using the SBISM were often different from those predicted by the AIS, especially during the 2018 growing season. The highly variable soils at the Missouri site complicated the interpretation of the sensor values. While all of the sites were within the Tiptonville silt loam map unit, some of the measurements appeared to come from sandier soils. The AIS assumed more water entered the soil than the sensors indicated from both irrigations and rainfalls less than 25 mm. While the irrigation amounts were based on the pivot sprinkler chart, previous testing had confirmed the accuracy of the charts. Furthermore, the difference varied among sites, especially for rainfall large enough to cause runoff. The recommendations based on the Watermark sensors agreed fairly well with the AIS in July after the data from the sandiest site was omitted; however, the later irrigations called for by the AIS were not indicated by the sensors. Both the sensor-based irrigation scheduling method and the AIS could be used as tools for irrigation management in the Mid-South region, but with careful attention to soil texture and the effective portion of rainfall or irrigation. Keywords: Irrigation scheduling, Soil moisture sensor, Soil water content, Water management.


Biologia ◽  
2009 ◽  
Vol 64 (3) ◽  
Author(s):  
Csilla Farkas ◽  
Márta Birkás ◽  
György Várallyay

AbstractSoil as the largest potential natural water reservoir in the Carpathian Basin has increasing importance under conditions of predicted climate change resulting in increase of probability of extreme hydrological events. Soil management changes soil structure and has a major effect on soil water, heat and nutrition regimes. In this study the effect of four tillage treatments in combination with catch crop management was studied on soil hydraulic properties and water regime under semi-arid conditions. Investigations were carried out in a long-term soil tillage experiment established on Calcic Chernozem soil in Hungary. Tillage variants comprised mouldboard ploughing, disking, loosening combined with disking and direct drilling. The crop sequence between September 2003 and September 2004 comprised maize (main crop), rye (catch crop) and pea (forage). In May 2004, disturbed samples and undisturbed soil cores were collected from each tillage treatment/catch crop combination. The main soil physical and hydrophysical properties were determined in laboratory. In each treatment, capacitive soil moisture probes were installed up to 80 cm depth to ensure continuous measurement of soil water content. Total soil water amounts of chosen soil layers and soil water content dynamics as a function of depth were evaluated for selected periods in order to quantify the effect of the studied management systems on soil water regime. The main conclusion from the experiment is that under such (or similar) ecological conditions, the uniform, „over-standardized“ adaptation of tillage methods for soil moisture conservation is rather risky, their application needs special care and the future is for site-specific precision technologies. These are, in combination with catch crop application can be efficient measures of environmental protection and soil structure and water conservation.


2014 ◽  
Vol 62 (2) ◽  
pp. 89-96 ◽  
Author(s):  
Shengqi Jian ◽  
Chuanyan Zhao ◽  
Shumin Fang ◽  
Kai Yu

Abstract In this paper, to evaluate the hydrological effects of Caragana korshinskii Kom., measured data were combined with model-simulated data to assess the C. korshinskii soil water content based on water balance equation. With measured and simulated canopy interception, plant transpiration and soil evaporation, soil water content was modeled with the water balance equation. The monthly variations in the modeled soil water content by measured and simulated components (canopy interception, plant transpiration, soil evaporation) were then compared with in situ measured soil water content. Our results shows that the modeled monthly water loss (canopy interception + soil evaporation + plant transpiration) by measured and simulated components ranges from 43.78 mm to 113.95 mm and from 47.76 mm to 125.63 mm, respectively, while the monthly input of water (precipitation) ranges from 27.30 mm to 108.30 mm. The relative error between soil water content modeled by measured and simulated components was 6.41%. To sum up, the net change in soil water (ΔSW) is negative in every month of the growing season. The soil moisture is approaching to wilting coefficient at the end of the growth season, and the soil moisture recovered during the following season.


2018 ◽  
Vol 156 (5) ◽  
pp. 577-598 ◽  
Author(s):  
S. Thaler ◽  
J. Eitzinger ◽  
M. Trnka ◽  
M. Možný ◽  
S. Hahn ◽  
...  

AbstractSimulation of the water balance in cropping systems is an essential tool, not only to monitor water status and determine drought but also to find ways in which soil water and irrigation water can be used more efficiently. However, besides the requirement that models are physically correct, the spatial representativeness of input data and, in particular, accurate precipitation data remain a challenge. In recent years, satellite-based soil moisture products have become an important data source for soil wetness information at various spatial-temporal scales. Four different study areas in the Czech Republic and Austria were selected representing Central European soil and climatic conditions. The performance of soil water content outputs from two different crop-water balance models and the Metop Advanced SCATterometer (ASCAT) soil moisture product was tested with field measurements from 2007 to 2011. The model output for soil water content shows that the crop model Decision Support System for Agrotechnology Transfer performs well during dry periods (<30% plant available soil moisture (ASM), whereas the soil water-balance model SoilClim presents the best results in humid months (>60% ASM). Moreover, the model performance is best in the early growing season and decreases later in the season due to biases in simulated crop-related above-ground biomass compared with the relatively stable grass canopy of the measurement sites. The Metop ASCAT soil moisture product, which presents a spatial average of soil surface moisture, shows the best performance under medium soil wetness conditions (30–50% ASM), which is related to low variation in precipitation frequency and under conditions of low-surface biomass (early vegetation season).


1997 ◽  
Vol 24 (1) ◽  
pp. 19-24 ◽  
Author(s):  
P. J. Sexton ◽  
J. M. Bennett ◽  
K. J. Boote

Abstract Peanut (Arachis hypogaea L.) fruit growth is sensitive to surface soil (0-5 cm) conditions due to its subterranean fruiting habit. This study was conducted to determine the effect of soil water content in the pegging zone (0-5 cm) on peanut pod growth rate and development. A pegging-pan-root-tube apparatus was used to separately control soil water content in the pegging and root zone for greenhouse trials. A field study also was conducted using portable rainout shelters to create a soil water deficit. Pod phenology, pod and seed growth rates, and final pod and seed dry weights were determined. In greenhouse studies, dry pegging zone soil delayed pod and seed development. In the field, soil water deficits in the pegging and root zone decreased pod and seed growth rates by approximately 30% and decreased weight per seed from 563 to 428 mg. Pegs initiating growth during drought stress demonstrated an ability to suspend development during the period of soil water deficit and to re-initiate pod development after the drought stress was relieved.


2009 ◽  
Vol 6 (5) ◽  
pp. 6425-6454
Author(s):  
H. Stephen ◽  
S. Ahmad ◽  
T. C. Piechota ◽  
C. Tang

Abstract. The Tropical Rainfall Measuring Mission (TRMM) carries aboard the Precipitation Radar (TRMMPR) that measures the backscatter (σ°) of the surface. σ° is sensitive to surface soil moisture and vegetation conditions. Due to sparse vegetation in arid and semi-arid regions, TRMMPR σ° primarily depends on the soil water content. In this study we relate TRMMPR σ° measurements to soil water content (ms) in Lower Colorado River Basin (LCRB). σ° dependence on ms is studied for different vegetation greenness values determined through Normalized Difference Vegetation Index (NDVI). A new model of σ° that couples incidence angle, ms, and NDVI is used to derive parameters and retrieve soil water content. The calibration and validation of this model are performed using simulated and measured ms data. Simulated ms is estimated using Variable Infiltration Capacity (VIC) model whereas measured ms is acquired from ground measuring stations in Walnut Gulch Experimental Watershed (WGEW). σ° model is calibrated using VIC and WGEW ms data during 1998 and the calibrated model is used to derive ms during later years. The temporal trends of derived ms are consistent with VIC and WGEW ms data with correlation coefficient (R) of 0.89 and 0.74, respectively. Derived ms is also consistent with the measured precipitation data with R=0.76. The gridded VIC data is used to calibrate the model at each grid point in LCRB and spatial maps of the model parameters are prepared. The model parameters are spatially coherent with the general regional topography in LCRB. TRMMPR σ° derived soil moisture maps during May (dry) and August (wet) 1999 are spatially similar to VIC estimates with correlation 0.67 and 0.76, respectively. This research provides new insights into Ku-band σ° dependence on soil water content in the arid regions.


2020 ◽  
Vol 68 (4) ◽  
pp. 404-410
Author(s):  
Antoni M.C. Verdú ◽  
M. Teresa Mas ◽  
Ramon Josa ◽  
Marta Ginovart

AbstractOrganic hydromulches can be an interesting alternative for weed control in perennial crops, but can also reduce soil water evaporation. To examine the effect of a hydromulch layer on soil water content in dry conditions laboratory experiments were conducted at constant 25°C, 40% air RH. Both for small soil containers with a short time course and for larger soil columns (with two sensors at depths of 6 cm and 11 cm) with a longer time course, the presence and also the thickness of hydromulch were significant factors for the temporal evolution of soil water content. Two distinct stages of the evaporation process, the first or initial stage and the last or final stage, were identified, analysed and compared for these experiments. General linear models performed on the soil water content temporal evolutions showed significant differences for the first and last stages at the top and bottom of the soil columns with and without hydromulch. Hydromulch application delayed the evaporation process in comparison with the control. Moreover, the hydromulch layer, which was tested for mechanical resistance to punching, offered enough resistance to prevent its perforation by the sprouts of weed rhizomes.


Biologia ◽  
2007 ◽  
Vol 62 (5) ◽  
Author(s):  
Horst Gerke ◽  
Rolf Kuchenbuch

AbstractPlants can affect soil moisture and the soil hydraulic properties both directly by root water uptake and indirectly by modifying the soil structure. Furthermore, water in plant roots is mostly neglected when studying soil hydraulic properties. In this contribution, we analyze effects of the moisture content inside roots as compared to bulk soil moisture contents and speculate on implications of non-capillary-bound root water for determination of soil moisture and calibration of soil hydraulic properties.In a field crop of maize (Zea mays) of 75 cm row spacing, we sampled the total soil volumes of 0.7 m × 0.4 m and 0.3 m deep plots at the time of tasseling. For each of the 84 soil cubes of 10 cm edge length, root mass and length as well as moisture content and soil bulk density were determined. Roots were separated in 3 size classes for which a mean root porosity of 0.82 was obtained from the relation between root dry mass density and root bulk density using pycnometers. The spatially distributed fractions of root water contents were compared with those of the water in capillary pores of the soil matrix.Water inside roots was mostly below 2–5% of total soil water content; however, locally near the plant rows it was up to 20%. The results suggest that soil moisture in roots should be separately considered. Upon drying, the relation between the soil and root water may change towards water remaining in roots. Relations depend especially on soil water retention properties, growth stages, and root distributions. Gravimetric soil water content measurement could be misleading and TDR probes providing an integrated signal are difficult to interpret. Root effects should be more intensively studied for improved field soil water balance calculations.


Sign in / Sign up

Export Citation Format

Share Document