scholarly journals Pedogenesis on volcanic rocks in protected landscape areas in Central and North Bohemia

2014 ◽  
Vol 9 (No. 4) ◽  
pp. 153-160 ◽  
Author(s):  
A. Žigová ◽  
M. Šťastný

The development of soil cover on volcanic rocks in Central and North Bohemia was analyzed. The study was performed in the protected landscape areas on basalt, andesite, and dolerite. Parent material was characterized on the basis of thin-section study. Petrography of the parent material makes it possible to document the differences in the texture, character, and amount of rock-forming minerals. All the studied sequences exhibit the same configuration of soil profiles but various thicknesses. The soil profiles were evaluated on the basis of particle size distribution, chemical properties, soil organic matter parameters, and mineral composition of clay fraction. The major specific pedogenic process in soils developed on volcanic rocks is weathering of parent material and development of the Bw horizon with the formation of mainly smectite from the group of swelling clay minerals. The results revealed differences in the formation of the Bw horizon which is significantly affected by the petrography of the parent material and local geological conditions. According to the type of volcanic rocks, the intensity of the developmental process of the Bw horizon is as follows: andesite (Týřovické skály) > dolerite (Záhrabská) > basalt (Březina).

1997 ◽  
Vol 77 (2) ◽  
pp. 295-307 ◽  
Author(s):  
T. A. Okusami ◽  
R. H. Rust ◽  
A. O. Alao

Representative profiles of the Owena, Egbeda, Alagba, and Balogun series were studied. The Owena soil is formed in amphibolite whereas Egbeda and Balogun soils are formed in biotite gneiss derived parent materials. The Alagba soil is formed in sandstone parent rock. The main objectives were to characterize the soils and their clay fraction, and to classify and interpret soil properties for agricultural land use. Most soils exhibit 2.5 YR hues in subsurface horizons. A pedon formed in biotite gneiss has the highest dithionite Fe content and Fed/clay ratio. The relationships between clay content and Fed values vary according to parent material origin and, therefore, would have to be interpreted differently for soil weathering processes. Clay coatings were noticeable in some soil horizons of all pedons studied. Soils are generally medium to slightly acid with sandstone-derived soils being the most acid. The clay mineral suite in all soils is dominated by kaolinite with traces of 2:1 and 2:2 clay minerals, goethite, hematite, anatase, maghemite, and rutile. In addition, some soils contain trace amounts of gibbsite. Kandic horizons have been identified in all soils. The low charge properties of the soils reflect the intensely weathered clay mineral suite. The base status is probably influenced by the cropping system and therefore may tend to unnecessarily differentiate highly weathered soils at the order level. The Egbeda and Balogun series were classified as Rhodic Kandiudults, clayey-skeletal, oxidic and Rhodic Kandiudalfs, clayey-skeletal, oxidic, respectively. Others, Owena, and Alagba series, were classified as Typic Kanhaplohumults, clayey, oxidic and Rhodic Kanhaplustults, fine loamy or clayey, oxidic, respectively. In the FAO-Unesco legend, all soils become Rhodic Ferralsols. In addition, the Owena (with its nitic properties) is further classified as niti-rhodic Ferralsol. The two classification systems are at variance for highly weathered (variable charge property) soils and this difference will definitely influence management decisions depending on which system is used at any particular time. Soil attributes favorable for agricultural use include thick sola and favorable structures. Chemical properties suggest minimal fixation of phosphorus. Key words: Dithionite Fe, kandic, oxidic, variable charge, ferralic, exchangeable Al


2021 ◽  
Author(s):  
Anna Masseroli ◽  
Irene M. Bollati ◽  
Luca Trombino ◽  
Manuela Pelfini

<p>In mountain environments, the high variability of soil forming factors (i.e., parent material, climate, relief, organism, time) is responsible for the presence of different soil types, which not only contribute to the pedodiversity but are also a component of the local cultural heritage.</p><p>Up to now, scarce attention has been paid to the soil in the geoheritage/geoconservation scientific analyses.</p><p>To promote soil as element concurring to mountain geoheritage definition, we propose a strategy to include pedological topics within a multidisciplinary trail planned in the Veglia-Devero Natural Park (Lepontine Alps). The geomorphological dynamicity and environmental change affecting during times the small mountain catchment of Buscagna hydrographic basin are illustrated with a specific address to soil characteristics. The physical and chemical properties, and pedological features of soils reflect the interaction among the other ecosystem components (i.e. geology, geomorphology and vegetation), underlining the role of soil as natural archive for reconstructing landscape evolution and for achieving a more complete assessment of Late Quaternary geomorphic events, especially surface processes.</p><p>Geopedological researches carried out in the study area, allowed to detect 7 soil profiles as potential sites of pedological interest, located in safe and accessible places, along already existing hiking paths. The selected soil profiles not only mirror the main soil types that characterize the area but also represent evidence of past environmental conditions and geomorphic dynamics.</p><p>The opportunities for hikers and mountaineers, to observe the exposed soils along the Buscagna valley, thanks to the presence of erosional scarps and subsidence areas, allow also to get more awareness of the need of geoheritage conservation strategies addressed to soil, especially in the mountain landscape where soil characteristics reflect the striking influence of its forming factors.</p>


2006 ◽  
Vol 86 (1) ◽  
pp. 61-76 ◽  
Author(s):  
N. E. García Calderón ◽  
A. Ibáñez Huerta ◽  
G. Alvarez Arteaga ◽  
P. V. Krasilnikov ◽  
A. Hernández Jiménez

Agroforestry is a new practice of sustainable soil use in the mountainous Sierra Sur de Oaxaca area of Mexico. Coffee is also a common cash crop grown in the region. The objective of this study was to investigate the pedodiversity in the area. Soil development is very complex, and is influenced by slope parameters and parent materials. Several soil groups are found in the area investigated: Alisols, Umbrisols, and Cambisols. Morphology, chemical properties, and mineralogical composition of the clay fraction of these soils were studied. The soils vary in the extent of weathering, morphology, and chemical properties, which are important to farming in the area. Most of the soils have heterogeneous parent material. The distribution of major soil types of the area is related to mass movement along the slopes, both past and present. The studied soils represent a chronosequence from unleached and unweathered Cambisols to Alisols, characterized by strong clay illuviation and dominance of kaolinite and gibbsite in clay fraction. A mosaic of landslides and gullies of various ages, formed by catastrophic events such as earthquakes and hurricanes, form the pedodiversity of the area studied. Key words: Landslides, chronosequence, pedodiversity, Cambisols, Umbrisols, Alisols


2017 ◽  
Vol 68 (1) ◽  
pp. 27-38 ◽  
Author(s):  
Joanna Kowalska ◽  
Bartłomiej Kajdas ◽  
Tomasz Zaleski

Abstract Carbonate-rich soils are characterized by great diversity in content of carbonate and non-carbonate mineral substances in soil substrate which largely influences soil properties. The study presents the analysis results of four soil profiles located at the area of Pieniny National Park. The aim of this study was to characterize and classify the soils developed from the mixture of carbonate and carbonate-rich rock material, formerly classified as pararendzinas. It was achieved by determination of morphological, physical, and chemical properties, as well as mineralogical composition of selected carbonate-rich soils occurring in the Polish part of the Pieniny Mts. Soils were classified as typical chernozemic rendzina (P1), typical eutrophic brown soils (P2, P4), as well as typical pararendzina (P3) according to Polish Soil Classification (2011). The parent material of studied soils P1, P2 and P4 were slope covers, with a dominant share of sandstone and minor share of limestone, whereas soil P3 was formed from variegated shale cut with multiple calcite veins. Soils were characterized by stable aggregate structure: crumby, angular blocky and subangular blocky. They were medium or strong skeletal, mostly with loam texture with great share of silt fraction. CaCO3 content in genetic horizons ranged from 0.0 to 703.0 g·kg-1. The reaction of studied soils was from weakly acidic to alkaline. Analysed soils were characterized by very high base saturation. Among determined exchangeable cations, Ca2+ ions had the biggest share in all analysed profile. High base saturation, as well as high content of calcium carbonate was accompanied by content of organic matter and percentage content of clay fraction. Taking into consideration determined chemical and physical properties, it can be found that investigated soils were influenced by not only the in-situ weathering material but also by rock material which have been transported and deposited as a result of slope processes. Furthermore, the lack or lower content of CaCO3 in surface and middle part of analysed soil profiles was most likely a result of the impoverishment of rock material during the transport on the slope.


2015 ◽  
pp. 29-50 ◽  
Author(s):  
T. V. Ananko ◽  
M. I. Gerasimova ◽  
D. E. Konyushkov

Based upon a comprehensive analysis of detailed descriptions of soil profiles and analytical data obtained by I. Sokolov, V. Zolnikov, L. Yelovskaya and other researchers, as well as upon data on the soil-forming factors, an attempt is made to determine the taxonomic level of pale undifferentiated neutral and slightly acid soils derived from carbonate-free deposits in the new classification system of Russian soils (versions 2004, 2008). The above group of soils is not uniform. According to their diagnostic morphological and physical-chemical properties the loamy permafrost-affected soils with ice-rich permafrost should be placed in the order of cryometamorphic or iron-metamorphic soils. The loamy sandy soils with dry permafrost may be placed in the same order. The soils with a shallow profile (< 30 cm) on hard parent rock should be qualified as members of the order of lithozems. The specific features of these soils make it possible to suggest new elements to the soil classification. A subtype of pale-metamorphized soils is offered to recognize the types of rzhavozems and raw-humus rzhavozems as the soils transitional to the pale soils. This suggestion is aimed at harmonization of a variety of ideas on the genesis, conditions for the development and nomenclature of soils, which permits us to give a more complete and reliable perception of the soil cover in the Central Siberian plateau.


Soil Research ◽  
2007 ◽  
Vol 45 (3) ◽  
pp. 153 ◽  
Author(s):  
Ian A. Navarrete ◽  
Victor B. Asio ◽  
Reinhold Jahn ◽  
Kiyoshi Tsutsuki

Very limited data have been published on the nature of strongly weathered soils in geologically young humid tropical islands. The study evaluated the characteristics and formation of 2 strongly weathered soils in the island of Samar, Philippines, one developed from slate (Bagacay soil) and the other from ultrabasic rock (Salcedo soil). Results revealed that the soils have generally similar morphological characteristics, particularly in terms of colour (2.5 YR-10 R), solum thickness (>5.0 m), and structure (granular to subangular blocky), although the Salcedo soil has much higher clay content than the Bagacay soil. Both soils have similar chemical properties (e.g. acidic, low exchangeable bases) except that the Salcedo soil has lower CEC values but higher exchangeable Na content, resulting in a higher base saturation. They also have high dithionite-extractable Fe contents and very low oxalate/dithionite ratios and are dominated by halloysite, kaolinite, gibbsite, goethite, hematite, and quartz in the clay fraction. Apparently as a result of its more weatherable ultrabasic parent rock and more stable geomorphic surface, the Salcedo soil shows more advanced weathering and soil development than the Bagacay soil. Salcedo soil is classified as Haplic Ferralsol (Dystric, Clayic, Rhodic) in the World Reference Base or very fine, sesquic, isohyperthermic, Rhodic Hapludox in the Soil Taxonomy. Bagacay soil is a Haplic Acrisol (Alumic, Hyperdystric, Clayic, Rhodic) or fine, kaolinitic, isohyperthermic, Typic Paleudult. The Salcedo soil has very high Ni and Cr contents inherited from its ultrabasic parent material. The study reveals that on the geologically young humid tropical island of Samar, the characteristics and genesis of strongly weathered soils are greatly affected by the geochemical characteristic of the parent rock material.


2010 ◽  
Vol 34 (3) ◽  
pp. 847-860 ◽  
Author(s):  
Aline Pacobahyba de Oliveira ◽  
João Carlos Ker ◽  
Ivo Ribeiro da Silva ◽  
Maurício Paulo Ferreira Fontes ◽  
Alessandra Pacobahyba de Oliveira ◽  
...  

Morphologically differentiated Spodosols usually occur in the Coastal Plain of the South of Bahia and North of Espírito Santo. They are found in profiles known as "muçungas", i.e. sandy soils that accumulate water. In these areas, two kinds of Spodosols, different from those in the Restinga area, can be found: Spodosols with E albic horizon (white muçunungas) and without this horizon (black muçunungas). Eight soil profiles with spodic characteristics were collected and described in order to evaluate differences in the formation process of Barreiras and Restinga Spodosols in the South of Bahia. The soil profiles were also characterized chemically, physically and mineralogically. Additionally, texture and chemical analysis, Fe and Al extraction by sodium dithionite-citrate-bicarbonate (DBC), acid ammonium oxalate and sodium pyrophosphate, ammonium oxalate extract optic density (DOox), sulphuric acid attack, and X ray difractometry of the clay fraction were performed. In the Spodosols of the Barreiras area, fragipan was found the spodic layers. Cemented B spodic horizon were observed in the white muçunungas, and granular structure and dark color from the surface in the black muçunungas. There was no fragipan or hard spodic horizon in the Restinga Spodosol. This soil is acid, dystrophic and alic, with sandy texture and high clay percentages in the spodic horizons. The CEC, based on H + Al, is predominantly represented by the organic matter. The most representative components of the mineral phase of the clay fraction are kaolinite and possibly vermiculite traces with interlayered hydroxy. Chemical, physical, morphological and mineralogical differences were observed between the Barreiras and Restinga environments. The black and white muçunungas differ in morphologic and chemical properties only.


2018 ◽  
Vol 111 (1) ◽  
pp. 121 ◽  
Author(s):  
Rok TURNIŠKI ◽  
Helena GRČMAN

Eluvial-illuvial processes plays key role in pedogenesis, especially in the development of leached soils. As reported in Slovenian soil map 1 : 25.000 leached soils cover 2,3 % of Slovenian territory. They occur on different parent materials, mostly on flat relief preserved from erosion and colluvial processes. The aim of our study is the evaluation of their morpohological, physical and chemical properties, spatial distribution and dependency on soil forming factors, especially on parent material. Pedological properties are demonstrated according to analytical and descriptive data of 49 leached soils from the pedological base of Soil Information System of Slovenia. Obvious leaching processes are clearly recognized in almost all profiles of leached soils. Eluvial horizon in comparison to illuvial horizon has lower pH value, which is in average 4,4 and 4,6 for E and Bt horizon respectively, brighter color, lower base saturation (in average for 16,6 %) and lower CEC (in average for 5,5 mmol<sub>c</sub> 100 g <sup>-1</sup> soil). On average ratio of clay content between illuvial and eluvial horizon is 1,63. In the 75 % of all studied leached soils this ratio is above 1,38. After evaluation, according to WRB classification, an argic horizon is identified only in 40 soil profiles, while other 9 profiles do not match criteria of sufficient textural differentiation or there is not enough data to classify them. Detailed overview of the WRB criteria for argic horizons (cation exchange capacity of clay fraction and base saturation in argic horizons) reveals that Luvisols and Alisols are the most widespread groups in Slovenia among leached soil. Against expectations based on different references, we do not determined Acrisols within Soil Map Database.


2015 ◽  
Vol 2 (2) ◽  
pp. 148-158
Author(s):  
Surianto

Spodosol soil of Typic Placorthod sub-group of East Barito District is one of the problem soils with the presence of hardpan layer, low fertility, low water holding capacity, acid reaction and it is not suitable for oil palm cultivation without any properly specific management of land preparation and implemented best agronomic practices. A study was carried out to evaluate the soil characteristic of a big hole (A profile) and no big hole (B profile) system and comparative oil palm productivity among two planting systems. This study was conducted in Spodosol soil at oil palm plantation (coordinate X = 0281843 and Y = 9764116), East Barito District, Central Kalimantan Province on February 2014, by surveying of placic and ortstein depth and observing soil texture and chemical properties of 2 (two) oil palm's soil profiles that have been planted in five years. Big hole system of commercial oil palm field planting on the Spodosol soil area was designed for the specific purpose of minimizing the potential of a negative effect of shallow effective planting depth for oil palms growing due to the hardpan layer (placic and ortstein) presence as deep as 0.25 - 0.50 m. The big hole system is a planting hole type which was vertical-sided with 2.00 m x 1.50 m on top and bottom side and 3.00 m depth meanwhile the 2:1 drain was vertical-sided also with 1.50 m depth and 300 m length. Oil palm production was recorded from the year 2012 up to 2014. Results indicated that the fractions both big hole profile (A profile) and no big hole profile (B profile) were dominated by sands ranged from 60% to 92% and the highest sands content of non-big hole soil profile were found in A and E horizons (92%). Better distribution of sand and clay fractions content in between layers of big hole soil profiles of A profile sample is more uniform compared to the B profile sample. The mechanical holing and material mixing of soil materials of A soil profile among the upper and lower horizons i.e. A, E, B and C horizons before planting that resulted a better distribution of both soil texture (sands and clay) and chemical properties such as acidity value (pH), C-organic, N, C/N ratio, CEC, P-available and Exchangeable Bases. Investigation showed that exchangeable cations (Ca, Mg, K), were very low in soil layers (A profile) and horizons (B profile) investigated. The low exchangeable cations due to highly leached of bases to the lower layers and horizons. Besides, the palm which was planted on the big hole system showed good adaptation and response positively by growing well of tertiary and quaternary roots that the roots were penetrable into deeper rooting zone as much as >1.00 m depth. The roots can grow well and penetrate much deeper in A profile compared to the undisturbed hardpan layer (B profile). The FFB (fresh fruit bunches) production of the non-big hole block was higher than the big hole block for the first three years of production. This might be due to the high variation of monthly rainfall in-between years of observation from 2009 to 2014. Therefore, the hardness of placic and ortstein as unpenetrable agents by roots and water to prevent water loss and retain the water in the rhizosphere especially in the drier weather. In the high rainfall condition, the 2:1 drain to prevent water saturation in the oil palm rhizosphere by moving some water into the drain. Meanwhile, the disturbed soil horizon (big hole area) was drier than un disturbance immediately due to water removal to deeper layers. We concluded that both big hole and 2:1 drain are a suitable technology for Spodosol soil land especially in preparing palms planting to minimize the negative effect of the hardpan layer for oil palm growth.


2020 ◽  
Vol 71 (1) ◽  
pp. 192-200
Author(s):  
Anca-Luiza Stanila ◽  
Catalin Cristian Simota ◽  
Mihail Dumitru

Highlighting the sandy soil of Oltenia Plain calls for a better knowledge of their variability their correlation with major natural factors from each physical geography. Pedogenetic processes specific sandy soils are strongly influenced by nature parent material. This leads, on the one hand, climate aridity of the soil due to strong heating and accumulation of small water reserves, consequences emphasizing the moisture deficit in the development of the vegetation and favoring weak deflation, and on the other hand, an increase in mineralization organic matter. Relief under wind characteristic sandy land, soil formation and distribution has some particularly of flat land with the land formed on the loess. The dune ridges are less evolved soils, profile underdeveloped and poorly supplied with nutrients compared to those on the slopes of the dunes and the interdune, whose physical and chemical properties are more favorable to plant growth.Both Romanati Plain and the Blahnita (Mehedinti) Plain and Bailesti Plain, sand wind shaped covering a finer material, loamy sand and even loess (containing up to 26% clay), also rippled with negative effects in terms of overall drainage. Depending on the pedogenetic physical and geographical factors that have contributed to soil cover, in the researched were identified following classes of soils: protisols, cernisols, cambisols, luvisols, hidrisols and antrosols.Obtaining appropriate agricultural production requires some land improvement works (especially fitting for irrigation) and agropedoameliorative works. Particular attention should be paid to preventing and combating wind erosion.


Sign in / Sign up

Export Citation Format

Share Document