scholarly journals Differences in the susceptibility of codling moth populations to Cydia pomonella granulovirus in the Czech Republic

2011 ◽  
Vol 38 (No. 1) ◽  
pp. 21-26 ◽  
Author(s):  
T. Zichová ◽  
V. Falta ◽  
F. Kocourek ◽  
J. Stará

The Cydia pomonella granulovirus is a very important agent for the biological control of the codling moth, Cydia pomonella, in both organic and integrated apple and pear production. Three populations of Cydia pomonella originating from three separate areas of the Czech Republic were tested for their susceptibility to Cydia pomonella granulovirus in laboratory bioassays at several concentrations of Cydia pomonella granulovirus. A sensitive laboratory strain was chosen as a control. The larval mortality was checked 14 days after the infection. The mortality of Cydia pomonella larvae was similar in specimens originating from both the wild populations and the laboratory strain. Decreased susceptibility to Cydia pomonella granulovirus was demonstrated neither in samples from locality without Cydia pomonella granulovirus treatment nor from a locality experimentally treated with Cydia pomonella granulovirus for several years during the registration process. However, one population experimentally treated for more than 10 years was partially resistant to Cydia pomonella granulovirus. Based on our findings; the Cydia pomonella granulovirus biopesticides will be efficient due to the high susceptibility of field codling moth populations to Cydia pomonella granulovirus in the Czech Republic.

2012 ◽  
Vol 111 (2) ◽  
pp. 136-142 ◽  
Author(s):  
Karin Undorf-Spahn ◽  
Eva Fritsch ◽  
Jürg Huber ◽  
Jutta Kienzle ◽  
Claus P.W. Zebitz ◽  
...  

1965 ◽  
Vol 56 (2) ◽  
pp. 377-388 ◽  
Author(s):  
M. Gratwick ◽  
J. M. Sillibourne ◽  
R. P. Tew

The persistence, as assessed by biological and chemical methods, of field deposits on apples from two spray programmes, each of DDT, carbaryl or azinphos-methyl, was compared throughout eight weeks following the first application in an orchard in south-eastern England. Newly emerged larvae of the codling moth, Cydia pomonella (L.), were used to assess, in the laboratory, the biological activity of the deposits. The spray programmes studied were (1) two applications of conventional concentrations (i.e., 0·1 per cent, for DDT and for carbaryl, 0·04 per cent, for azinphos-methyl) three weeks apart and (2) three applications of half these concentrations at two-weekly intervals. DDT wettable powder, carbaryl and azinphos-methyl were compared in 1961, DDT emulsion, DDT wettable powder and carbaryl in 1963. Results of biological and chemical assessment of the deposits are presented graphically. Over-all, the performance of the three-application programmes was as satisfactory as that of the two-application programmes, although a smaller amount of chemical was used. The serious reduction in deposit caused by heavy rain shortly after the first application of DDT wettable powder and of carbaryl in 1961 is noted. In the absence of heavy rain, carbaryl was biologically the most persistent, but the best performances of the other chemicals were almost as good as that of carbaryl.LD50 values of fresh deposits obtained by field spraying were shown to be similar to those obtained by laboratory dipping.Comparison of the toxicity of fresh and weathered field deposits of similar magnitude indicated that the biologically available proportion of a DDT deposit from either formulation decreases as a result of weathering. This phenomenon was not found to occur with carbaryl and either not at all or to a much lesser extent with azinphos-methyl.The deposits obtained in the comparison of the spray programmes were separated into their fresh and aged components, so that differences in the contribution to the final deposit provided by each application could be seen. With the very persistent DDT emulsion, only about half of the six-week deposits was composed of chemical from the final application, but, with the much less persistent carbaryl and azinphos methyl, the six-week deposits were almost entirely derived from the final application. By substitution in an equation to obtain the rates of decay of the deposits from the three-application programmes of all chemicals, it is shown that deposits from the second and third applications were, in all cases, more persistent than those from the first. Possible reasons for this difference are discussed.The significance, in terms of field control, of the results for the larvicidal activity of the deposits from the different spray programmes is indicated. It is concluded that data on the LD90 of insecticidal deposits on apples, together with measurement of their persistence in the field, can be used to assess the probable field performance of codling-moth insecticides and to determine the most efficient means of employing them, although the deposit level that ensures 90 per cent, larval mortality in the field is higher than the LD90 determined in the laboratory.


Viruses ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 658 ◽  
Author(s):  
Boitumelo Motsoeneng ◽  
Michael D. Jukes ◽  
Caroline M. Knox ◽  
Martin P. Hill ◽  
Sean D. Moore

The complete genome of an endemic South African Cydia pomonella granulovirus isolate was sequenced and analyzed. Several missing or truncated open reading frames (ORFs) were identified, including a 24 bp deletion in the pe38 gene which is reported to be associated with type I resistance-breaking potential. Comparison of single nucleotide polymorphisms (SNPs) with five other fully sequenced CpGV isolates identified 67 unique events, 47 of which occurred within ORFs, leading to several amino acid changes. Further analysis of single nucleotide variations (SNVs) within CpGV-SA revealed that this isolate consists of mixed genotypes. Phylogenetic analysis using complete genome sequences placed CpGV-SA basal to M, I12 and E2 and distal to S and I07 but with no distinct classification into any of the previously defined CpGV genogroups. These results suggest that CpGV-SA is a novel and genetically distinct isolate with significant potential as a biopesticide for management of codling moth (CM), not only in South Africa, but potentially in other pome fruit producing countries, particularly where CM resistance to CpGV has been reported.


Viruses ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 621 ◽  
Author(s):  
Graillot ◽  
Blachere-López ◽  
Besse ◽  
Siegwart ◽  
López-Ferber

To test the importance of the host genotype in maintaining virus genetic diversity, five experimental populations were constructed by mixing two Cydia pomonella granulovirus isolates, the Mexican isolate CpGV-M and the CpGV-R5, in ratios of 99% M + 1% R, 95% M + 5% R, 90% M + 10% R, 50% M + 50% R, and 10% M + 90% R. CpGV-M and CpGV-R5 differ in their ability to replicate in codling moth larvae carrying the type I resistance. This ability is associated with a genetic marker located in the virus pe38 gene. Six successive cycles of replication were carried out with each virus population on a fully-permissive codling moth colony (CpNPP), as well as on a host colony (RGV) that carries the type I resistance, and thus blocks CpGV-M replication. The infectivity of offspring viruses was tested on both hosts. Replication on the CpNPP leads to virus lineages preserving the pe38 markers characteristic of both isolates, while replication on the RGV colony drastically reduces the frequency of the CpGV-M pe38 marker. Virus progeny obtained after replication on CpNPP show consistently higher pathogenicity than that of progeny viruses obtained by replication on RGV, independently of the host used for testing.


1982 ◽  
Vol 114 (4) ◽  
pp. 363-376 ◽  
Author(s):  
M. D. Proverbs ◽  
J. R. Newton ◽  
C. J. Campbell

AbstractCodling moth, Cydia pomonella (L.), control by sterile insect release (SIR) was assessed in 320–526 ha of apples and pears in the Similkameen Valley, B.C., from 1976 to 1978. In preparation for SIR, the moth population was first reduced to low numbers by removal of neglected trees in 1972 and by chemical sprays in 1975. Sterile (35 krad) male and female moths were released in each orchard 2 or 3 times weekly from 1 May until early September. A total of 23,600 sterile moths/ha was released in 1976, 36,500 in 1977, and 31,800 in 1978. Populations of sterile (marked) and wild moths were monitored by sex pheromone traps, and damage was assessed by fruit examination at harvest. Control was very good except for a few orchards in which overwintered populations were too high to achieve adequate overflooding with sterile moths. Damage exceeded the economic threshold (0.5%) in only 1 of 86 treated orchards in 1976, in 6 of 193 orchards in 1977, and in 0 of 157 orchards in 1978. Results in 32 orchards showed that when wild populations are brought close to extinction all codling moth control measures can be omitted for 2 or more years depending on degree of orchard isolation. Omission of codling moth sprays from 1976 to 1978 did not result in any important change in population levels of other apple pests. Cost of control by SIR was ca. $225/ha per year vs. ca. $95 for chemical control.


Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1952
Author(s):  
Annette J. Sauer ◽  
Eva Fritsch ◽  
Karin Undorf-Spahn ◽  
Kento Iwata ◽  
Regina G. Kleespies ◽  
...  

Cydia pomonella granulovirus (CpGV) is a widely used biological control agent of the codling moth. Recently, however, the codling moth has developed different types of field resistance against CpGV isolates. Whereas type I resistance is Z chromosomal inherited and targeted at the viral gene pe38 of isolate CpGV-M, type II resistance is autosomal inherited and targeted against isolates CpGV-M and CpGV-S. Here, we report that mixtures of CpGV-M and CpGV-S fail to break type II resistance and is expressed at all larval stages. Budded virus (BV) injection experiments circumventing initial midgut infection provided evidence that resistance against CpGV-S is midgut-related, though fluorescence dequenching assay using rhodamine-18 labeled occlusion derived viruses (ODV) could not fully elucidate whether the receptor binding or an intracellular midgut factor is involved. From our peroral and intra-hemocoel infection experiments, we conclude that two different (but genetically linked) resistance mechanisms are responsible for type II resistance in the codling moth: resistance against CpGV-M is systemic whereas a second and/or additional resistance mechanism against CpGV-S is located in the midgut of CpR5M larvae.


2008 ◽  
Vol 75 (4) ◽  
pp. 925-930 ◽  
Author(s):  
Marie Berling ◽  
Christine Blachere-Lopez ◽  
Olivier Soubabere ◽  
Xavier Lery ◽  
Antoine Bonhomme ◽  
...  

ABSTRACT Cydia pomonella granulovirus (CpGV) has been used for 15 years as a bioinsecticide in codling moth (Cydia pomonella) control. In 2004, some insect populations with low susceptibility to the virus were detected for the first time in southeast France. RGV, a laboratory colony of codling moths resistant to the CpGV-M isolate used in the field, was established with collection of resistant insects in the field followed by an introgression of the resistant trait into a susceptible colony (Sv). The resistance level (based on the 50% lethal concentrations [LC50s]) of the RGV colony to the CpGV-M isolate, the active ingredient in all commercial virus formulations in Europe, appeared to be over 60,000-fold compared to the Sv colony. The efficiency of CpGV isolates from various other regions was tested on RGV. Among them, two isolates (I12 and NPP-R1) presented an increased pathogenicity on RGV. I12 had already been identified as effective against a resistant C. pomonella colony in Germany and was observed to partially overcome the resistance in the RGV colony. The recently identified isolate NPP-R1 showed an even higher pathogenicity on RGV than other isolates, with an LC50 of 166 occlusion bodies (OBs)/μl, compared to 1.36 � 106 OBs/μl for CpGV-M. Genetic characterization showed that NPP-R1 is a mixture of at least two genotypes, one of which is similar to CpGV-M. The 2016-r4 isolate obtained from four successive passages of NPP-R1 in RGV larvae had a sharply reduced proportion of the CpGV-M-like genotype and an increased pathogenicity against insects from the RGV colony.


Viruses ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 570 ◽  
Author(s):  
Jiangbin Fan ◽  
Jörg Wennmann ◽  
Johannes Jehle

Current knowledge of the field resistance of codling moth (CM, Cydia pomonella, L) against Cydia pomonella granulovirus (CpGV) is based mainly on the interaction between the Mexican isolate CpGV-M and CpRR1, a genetically homogeneous CM inbreed line carrying type I resistance. The resistance level of laboratory-reared CpRR1 to CpGV-M was recently found to have decreased considerably, compared to the initially high resistance. To understand the background of this phenomenon, CpRR1 larvae were exposed over several generations to CpGV-M for re-selection of the original resistance level. After five and seven generations of selection, new CpRR1_F5 and CpRR1_F7 lines were established. The resistance ratio of these selected lines was determined by full range bioassays. The CpRR1_F5 strain regained a higher level of resistance against CpGV up to 104-fold based on LC50 values compared to susceptible larvae (CpS), which indicated that the absence of virus selection had resulted in a reduction of resistance under laboratory rearing conditions. In addition, some fitness costs of fecundity were observed in CpRR1_F5. Single-pair crossings between CpRR1_F5 or CpRR1_F7 with susceptible CpS moths revealed a dominant but not fully sex-linked inheritance, which suggests a partial loss of previous resistance traits in CpRR1.


2015 ◽  
Vol 36 (4) ◽  
pp. 603-638 ◽  
Author(s):  
Peter Bolcha ◽  
Jan Rovný

AbstractResearch into the detection of fraud and corruption has brought many new insights in recent decades, partly thanks to a decrease in the costs of data collection and processing. However, access to data often remains an issue, especially when fraud or corruption seems to be present. This article applies a simple detection method focussing on possible manipulations in the car registration process in the Czech Republic, where car registration plates are allegedly assigned in random order. As access to official data was denied, we collected data in the field for a random sample of 5,000 cars, and used this to examine the existence of statistical relationships between the cars’ estimated price at registration and their registration plate numbers. The results show that cars with intuitively appealing registration plates are on average significantly more expensive than other cars. Moreover, this price difference corresponds to the relative scarcity of the given type of registration plate number, which could be a sign of discretionary behaviour in the allocation of such plates.


Sign in / Sign up

Export Citation Format

Share Document